Skip to main content

Advertisement

Log in

Preparing the ground for an operational handling of long-term emissions in LCA

  • LCA OF WASTE MANAGEMENT SYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Currently, there is no meaningful methodology for the estimation of environmental impacts from long-term heavy metal emissions in a life cycle assessment (LCA) context, when an assessment of landfill and mining technologies is performed. In this paper, the aims are to investigate the main issues hindering the standardisation of a methodology to account for potential impacts from long-term metal emissions, and to describe the characteristics of a robust framework for an operational impact assessment methodology.

Methods

In order to demonstrate the issues around potential impacts from long-term emissions in LCA and derive a scientific basis for developing an adequate LCA methodology to address these impacts, a two-part review on long-term metal emissions is performed that (a) identifies a suitable time-dependent life cycle inventory (LCI) while underlining the problems in existing emission prediction attempts and (b) describes the existing LCA approaches for accounting of toxic potential impacts from these emissions while explaining the reason that the identified proposals have not been adopted from the LCA community. These approaches are then compared upon the basis of a common LCI and their differences are highlighted.

Results and discussion

A suitable dynamic LCI is identified for landfill emissions, which calculates Ni, Zn, Cd and Pb emissions as a function of time, based on assumed developments of the leachate pH. The results of the application of the different impact assessment methods on that LCI differ by up to 8 orders of magnitude. Therefore, the decision-making process supported by an LCA becomes very confusing. None of the approaches consider future changes in the receiving environment and are accompanied with any uncertainty considerations.

Conclusions

In order to move towards a robust environmental assessment of long-term emissions, it is necessary to (i) represent future potential impacts more accurately by estimating time-dependent characterisation factors (CFs) corresponding to changing environmental conditions, (ii) develop more robust estimations by addressing uncertainty and (iii) refer to actual potential impacts, by taking into account the current and future background concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Althaus H, Classen M (2005) Life cycle inventories of metals and methodological aspects of inventorying material resources in ecoinvent. Int J Life Cycle Assess 10:43–49

    Article  CAS  Google Scholar 

  • Astrup T, Mosbaek H, Christensen TH (2006) Assessment of long-term leaching from waste incineration air-pollution-control residues. Waste Manag 26:803–814

    Article  CAS  Google Scholar 

  • Batjes NH (2008) ISRIC-WISE Harmonized Global Soil Profile Dataset (Ver. 3.1). Rep. 2008/2, ISRIC - World Soil Information, Wageningen, with dataset

    Google Scholar 

  • Birgisdóttir H (2005) Life cycle assessment model for road construction and use of residues from waste incineration. Technical University of Denmark, Denmark

    Google Scholar 

  • Bolton KA, Evans LJ (1991) Elemental composition and speciation of some landfill leachates with particular reference to cadmium. Water Air Soil Pollut 60:43–53

    Article  CAS  Google Scholar 

  • Bozkurt S, Moreno L, Neretnieks I (2000) Long-term processes in waste deposits. Sci Total Environ 250:101–121

    Article  CAS  Google Scholar 

  • Bozkurt S, Moreno L, Neretnieks I (1999) Long-term fate of organics in waste deposits and its effect on metal release. Sci Total Environ 228:135–152

    Article  CAS  Google Scholar 

  • Bozkurt S, Sifvert M, Moreno L, Neretnieks I (2001) The long-term evolution of and transport processes in a self-sustained final cover on waste deposits. Sci Total Environ 271:145–168

    Article  CAS  Google Scholar 

  • Brand E, De Nijs T, Claessens J, DijkStra J, Comans R, Lieste R (2014) Development of emission testing values to assess sustainable landfill management on pilot landfills. National Institute of Public Health and the Environment, Bilthoven, the Netherlands

    Google Scholar 

  • Christensen AG, Fischer EV, Nielsen HN, Nygaard T, Ostergaard H, Lenschow SR, Sørensen H, Fuglsang IA, Larsen TH (2000) Passive soil vapor extraction of chlorinated solvents using boreholes. The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California

    Google Scholar 

  • Christensen T, Kjeldsen P, Bjerg P, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  • Doka G (2009) Life cycle inventories of waste treatment services. Ecoinvent report no. 13. Swiss Cent. Life Cycle Invent, Dubedorf, 2009

    Google Scholar 

  • Finnveden G (1996) Solid waste treatment within the framework of life cycle assessment—metals in municipal solid waste landfills. Int J Life Cycle Assess 1(2):74–78

    Article  CAS  Google Scholar 

  • Finnveden G (1999) Methodological aspects of life cycle assessment of integrated solid waste management systems. Resour Conserv Recycl 26:173–187

    Article  Google Scholar 

  • Finnveden G, Huppes G (1995) Life cycle assessment and treatment of solid waste. Proceedings of the international workshop, Stockholm, Sweden. AFR-Report 98. Stock. Sweden AFR, Swedish EPA

  • Finnveden G, Albertsson A-C, Berendson J, Eriksson E, Höglund LO, Karlsson S, Sundqvist J-O (1995) Solid waste treatment within the framework of life cycle assessment. J Cleaner Prod 3(4):189–199

    Article  Google Scholar 

  • Finnveden G, Nielsen PH (1999) Long-term emissions from landfills should not be disregarded. Int J Life Cycle Assess 4:125–126

    Article  Google Scholar 

  • Flyhammar P, Tamaddon F, Bengtsson L (1998) Heavy metals in a municipal solid waste deposition cell. Waste Manag Res 16:403–410

    Article  CAS  Google Scholar 

  • Frischknecht R, Rebitzer G (2005) The ecoinvent database system: a comprehensive web-based LCA database. J Clean Prod 13:1337–1343

    Article  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008; a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level—report I: characterisation. Minist. van VROM, Den Haag

    Google Scholar 

  • Goedkoop M, Spriensma R (2001a) The Eco-indicator 99; a damage oriented method for life cycle impact assessment—methodology annex. PRé Consult, Amersfoort, Netherlands

    Google Scholar 

  • Goedkoop M, Spriensma R (2001b) The Eco-indicator 99; a damage oriented method for life cycle impact assessment—methodology report. PRé Consult, Amersfoort, Netherlands

    Google Scholar 

  • Guinée J, Heijungs R (1993) A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere 26:1925–1944

    Article  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes J, Kleijn R, de Koning A, Van Oers A, Sleeswijk AW, Suh S, Udo De Haes HA, De Bruijn H, Van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Van Der VBL, Weidema B (2001a) Life cycle assessment; an operational guide to the ISO standards. Minist. Housing, Spat. Plan. Environ. Cent. Environ. Sci. (CML), Den Haag Leiden, Netherlands

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes J, Kleijn R, de Koning A, Van Oers A, Sleeswijk AW, Suh S, Udo De Haes HA, De Bruijn H, Van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, Van Der VBL, Weidema B (2001b) Life cycle assessment; an operational guide to the ISO standards—part 3: scientific background. Minist. Housing, Spat. Plan. Environ. Cent. Environ. Sci. (CML), Den Haag Leiden, Netherlands

    Google Scholar 

  • Harvey CM (1994) The reasonableness of non-constant discounting. J Public Econ 53:31–51

    Article  Google Scholar 

  • Hauschild M, Olsen SI, Hansen E, Schmidt A (2008) Gone…but not away—addressing the problem of long-term impacts from landfills in LCA. Int J Life Cycle Assess 13:547–554

    Article  Google Scholar 

  • Hauschild MZ, Potting J (2005) Background for spatial differentiation in LCA impact assessment: the EDIP03 methodology. Environ. Proj. No. 996. Inst. Prod. Dev. Tech. Univ, Denmark

    Google Scholar 

  • Hauschild MZ, Wenzel H (1997) Environmental assessment of products, vol 2: Scientific background. Chapman & Hall, London, Weinheim, New York

    Google Scholar 

  • Hellweg S, Hofstetter TB, Hungerbühler K (2003) Discounting and the environment; should current impacts be weighted differently than impacts harming future generations? Int J Life Cycle Assess 8:8–18

    Article  Google Scholar 

  • Hellweg S, Hofstetter TB, Hungerbühler K (2005) Time-dependent life-cycle assessment of slag landfills with the help of scenario analysis: the example of Cd and Cu. J Clean Prod 13:301–320

    Article  Google Scholar 

  • Herselman JE, Steyn CE, Fey MV (2005) Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa. S Afr J Sci 101:509–512

    CAS  Google Scholar 

  • Hischier R, Weidema B, Althaus H-J, Bauer C, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Köllner T, Loerincik Y, Margni M, Nemecek T (2010) Implementation of life cycle impact assessment methods. ecoinvent report No. 3, v2.2. Swiss Cent. Life Cycle Invent. Dübend

  • Hjelmar O (1990) Leachate from land disposal of coal fly ash. Waste Manag Res 8:429–449

    Article  CAS  Google Scholar 

  • Hofstetter P, Baumgartner T, Scholz RW (2000) Modelling the valuesphere and the ecosphere: integrating the decision makers’ perspectives into LCA. Int J Life Cycle Assess 5:161–175

    Article  Google Scholar 

  • Huijbregts MA, Guinée JB, Reijnders L (2001) Priority assessment of toxic substances in life cycle assessment. III: export of potential impact over time and space. Chemosphere 44:59–65

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, Van de Meent D, Ragas AMJ, Sleeswijk AW, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES -LCA. Chemosphere 41:541–573

    Article  CAS  Google Scholar 

  • Hyks J, Astrup T, Christensen TH (2009) Long-term leaching from MSWI air-pollution-control residues: leaching characterization and modeling. J Hazard Mater 162:80–91

    Article  CAS  Google Scholar 

  • ISO (2006a) Environmental management—life cycle assessment—principles and framework. Int Stand Organ Geneva 14040:2006

    Google Scholar 

  • ISO (2006b) Environmental management—life cycle assessment—requirements and guidelines. Int Stand Organ Geneva 14044:2006

    Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum RK (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Kjeldsen P, Christophersen M (2001) Composition of leachate from old landfills in Denmark. Waste Manag Res 19:249–256

    Article  CAS  Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma 148:189–199

    Article  CAS  Google Scholar 

  • Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild MZ, Christensen TH (2014a) Review of LCA studies of solid waste management systems—part I: lessons learned and perspectives. Waste Manag 34:573–588

    Article  Google Scholar 

  • Laurent A, Clavreul J, Bernstad A, Bakas I, Niero M, Gentil E, Christensen TH, Hauschild MZ (2014b) Review of LCA studies of solid waste management systems—part II: methodological guidance for a better practice. Waste Manag 34:589–606

    Article  Google Scholar 

  • Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44:3169–3174

    Article  CAS  Google Scholar 

  • Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47:3241–3250

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations. Water Resour Investig Rep 99–4259

  • Pettersen J, Hertwich EG (2008) Critical review: life-cycle inventory procedures for long-term release of metals. Environ Sci Technol 42:4639–4647

    Article  CAS  Google Scholar 

  • Reid C, Bécaert V, Aubertin M, Rosenbaum RK, Deschênes L (2009) Life cycle assessment of mine tailings management in Canada. J Clean Prod 17:471–479

    Article  Google Scholar 

  • Richards BK, Steenhuis TS, Peverly JH, McBride MB (2000) Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environ Pollut 109:327–346

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  • Schryver AM, Humbert S, Huijbregts MAJ (2012) The influence of value choices in life cycle impact assessment of stressors causing human health damage. Int J Life Cycle Assess 18:698–706

    Article  Google Scholar 

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. US Geological Survey Professional Paper, USA, p 1270

    Google Scholar 

  • Singh SP, Hendry MJ (2012) Solid-phase distribution and leaching behaviour of nickel and uranium in a uranium waste-rock piles. Water Air Soil Pollut 224:1360

    Article  Google Scholar 

  • Slack RJ, Gronow JR, Hall DH, Voulvoulis N (2007) Household hazardous waste disposal to landfill: using LandSim to model leachate migration. Environ Pollut 146:501–509

    Article  CAS  Google Scholar 

  • Stüben D, Berner Z, Kappes B, Puchelt H (2001) Environmental monitoring of heavy metals and arsenic from Ag-Pb-Zn mining: a case study over two millennia. Environ Monit Assess 70:181–200

    Article  Google Scholar 

  • Udo de Haes HA, Jolliet O, Finnveden G, Hauschild MZ, Krewit W, Mueller-Wenk R (1999) Best available practice regarding impact categories and category indicators in life cycle impact assessment. Backgr. Doc. Second Work. Gr. Life Cycle Impact Assess. SETAC-Europe. p 9

  • Van der Sloot HA, Comans RNJ, Hjelmar O (1996) Similarities in the leaching behaviour of trace contaminants from waste, stabilised waste, construction materials and soils. Sci Total Environ 178:111–126

    Article  Google Scholar 

  • Van der Voet E, Guinée JB, Udo de Haes HA (2000) Heavy metals: a problem solved? Kluwer, Dordrecht-Boston-London

    Google Scholar 

  • Zhao FJ, McGrath SP, Merrington G (2007) Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environ Pollut 148:221–229

    Article  CAS  Google Scholar 

Download references

Compliance with ethical standards

Our research does not involve any human or animal participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Bakas.

Additional information

Responsible editor: Mark Huijbregts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakas, I., Hauschild, M.Z., Astrup, T.F. et al. Preparing the ground for an operational handling of long-term emissions in LCA. Int J Life Cycle Assess 20, 1444–1455 (2015). https://doi.org/10.1007/s11367-015-0941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0941-4

Keywords

Navigation