, Volume 15, Issue 3, pp 284-293

Environmental impacts of conventional plastic and bio-based carrier bags

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background, aim, and scope

The use of bio-based products as carrier bags, packaging materials, and many other applications has been increasingly replacing conventional polymer products. One of the main driving forces of bio-plastic applications is the perceived depletion and scarcity of fossil fuels, especially petroleum. However, despite being introduced as an environmentally friendly alternative to plastics made from crude oil, the environmental benefits of bio-plastics remain debatable. This article serves to investigate whether or not bio-based materials are environmentally friendlier options compared to plastics and attempts to explain the rationale of the results.

Materials and methods

The production and disposal of both conventional plastic and bio-plastic carrier bags are investigated using life cycle assessment or LCA. A typical bio-based bag (made from polyhydroxyalkanoate or PHA) from the U.S. was selected to be compared with a locally produced polyethylene plastic (PP) bag in Singapore. In the LCA system, the raw materials for making polyethylene came from crude oil imported from Middle East and natural gas piped from Natuna gas field. The refinery and PP bag production processes are based in Singapore. Bio-bag production was entirely in the U.S., and the finished product was shipped to Singapore. The impact assessment results were generated for global warming potential, acidification, and photochemical ozone formation. Next, normalized results were calculated according to the parameters of Singapore’s annual emission inventory.

Results

The total environmental impacts of bio-bags showed considerable differences under various energy scenarios. When the energy expenditures to make bio-bags are supplied by U.S. electricity mix, the production impacts are about 69% higher, compared to the impacts from PP bags. With coal-fired power supply, the production impacts from bio-bag production turned out to be about five times greater than those from conventional plastics. The life cycle production impacts of PP bags are comparable to bio-bags when the energy supplied to the bio-material production chain is supplied by natural gas. Bio-bags are 80% more environmentally friendly than plastic bags when clean and renewable energy (geothermal) is used throughout its life cycle production stages.

Discussions and conclusions

By the use of LCA with different energy scenarios, this article sheds some light on the extent of environmental benefits (or drawbacks) of replacing plastic carrier bags with PHA bags. It was concluded that the life cycle production of bio-bags can only be considered as environmentally friendly alternatives to conventional plastic bags if clean energy sources are supplied throughout its production processes. It was also highlighted that the results should not be viewed as a global representative since the case study scope was for Singapore alone. Additional work by others on different biodegradable and compostable bags vary in results. Some of the complexities of such work lie in what is included or excluded from the scope and the adoption of different environmental impact assessment methods. Nevertheless, the authors’ attempt to compare the two bags may serve as a basis for identifying the major environmental burdens of such materials’ life cycle production.

Recommendations and perspectives

Although bio-based products have been mostly regarded as a sustainable solution for replacing petroleum-based polymers, in most cases, the amounts of resources and energy required to produce them have not been taken into account. Before bio-based plastics can be recommended as a preferred option to plastics, a few challenges have to be overcome. The main issue lies in reducing the energy used in the life cycle production of the bio-material from crops. The environmental benefits and drawbacks of both materials should also be more clearly highlighted by expanding the system boundary to include end-of-life options; this is carried out in part 2 (Khoo and Tan, Int J Life Cycle Assess, in press, 2010).

Part 2: end-of-life options