Skip to main content
Log in

Brain oxygenation responses to an autonomic challenge: a quantitative fMRI investigation of the Valsalva manoeuvre

  • Published:
AGE Aims and scope Submit manuscript

Abstract

In late age, the autonomic nervous system (ANS) has diminished ability to maintain physiological homeostasis in the brain in response to challenges such as to systemic blood pressure changes caused by standing. We devised an fMRI experiment aiming to map the cerebral effects of an ANS challenge (Valsalva manoeuvre (VM)). We used dual-echo fMRI to measure the effective transverse relaxation rate (R2*, which is inversely proportional to brain tissue oxygenation levels) in 45 elderly subjects (median age 80 years old, total range 75–89) during performance of the VM. In addition, we collected fluid-attenuated inversion recovery (FLAIR) data from which we quantified white matter hyperintensity (WMH) volumes. We conducted voxelwise analysis of the dynamic changes in R2* during the VM to determine the distribution of oxygenation changes due to the autonomic stressor. In white matter, we observed significant decreases in oxygenation levels. These effects were predominantly located in posterior white matter and to a lesser degree in the right anterior brain, both concentrated around the border zones (watersheds) between cerebral perfusion territories. These areas are known to be particularly vulnerable to hypoxia and are prone to formation of white matter hyperintensities. Although we observed overlap between localisation of WMH and triggered deoxygenation on the group level, we did not find significant association between these independent variables using subjectwise statistics. This could suggest other than recurrent transient hypoxia mechanisms causing/contributing to the formation of WMH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACA:

Anterior artery perfusion territory

ANS:

Autonomic nervous system

BOLD:

Blood oxygenation level dependent

CBF:

Cerebral blood flow

EPI:

Echo planar imaging

GLM:

General linear model

GM:

Gray matter

HWGFS:

Half-width of the gamma function smoothing of the input waveform

MCA:

Medial cerebral artery territory

R2*:

Effective transverse relaxation rate

TE:

Echo time

TR:

Repetition time

VM:

Valsalva manoeuvre

WM:

White matter

WMH:

White matter hyperintensities

References

  • Ashburner J, Friston KJ (2005) Unified segmentation NeuroImage 26:839–851. doi:10.1016/j.neuroimage.2005.02.018

  • Caine D, Watson JD (2000) Neuropsychological and neuropathological sequelae of cerebral anoxia: a critical review. J Int Neuropsychological Soc: JINS 6:86–99

    Article  CAS  PubMed  Google Scholar 

  • Dawson SL, Panerai RB, Potter JF (1999) Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver. J Appl Physiol 86:675–680

    CAS  PubMed  Google Scholar 

  • Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666. doi:10.1136/bmj.c3666

    Article  PubMed Central  PubMed  Google Scholar 

  • Feihl F, Liaudet L, Levy BI, Waeber B (2008) Hypertension and microvascular remodelling. Cardiovasc Res 78:274–285. doi:10.1093/cvr/cvn022

    Article  CAS  PubMed  Google Scholar 

  • Fernando MS et al (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury Stroke; a journal of cerebral circulation 37:1391–1398. doi:10.1161/01.STR.0000221308.94473.14

  • Ferrer I, Kaste M, Kakiko H (2008) In: Love S, Louis DN, Ellison D. (eds) Greenfield’s Neuropathology, vol 1. Hodder Arnold Publication, p 128

  • Firbank MJ, Minett T, O'Brien JT (2003) Changes in DWI and MRS associated with white matter hyperintensities in elderly subjects Neurology 61:950–954

  • Galluzzi S et al (2009) Cardiac autonomic dysfunction is associated with white matter lesions in patients with mild cognitive impairment. J Gerontol A: Biol Med Sci 64:1312–1315. doi:10.1093/gerona/glp105

    Article  Google Scholar 

  • Glover GH, Lemieux SK, Drangova M, Pauly JM (1996) Decomposition of inflow and blood oxygen level-dependent (BOLD) effects with dual-echo spiral gradient-recalled echo (GRE) fMRI. Magnetic Resonance Med: Off J Soc Magnetic Resonance Med/Soc Magnetic Resonance Med 35:299–308

    Article  CAS  Google Scholar 

  • Grueter BE, Schulz UG (2012) Age-related cerebral white matter disease (leukoaraiosis): a review Postgrad Med J 88:79–87. doi:10.1136/postgradmedj-2011-130307

  • He J, Hollingsworth KG, Newton J, Blamire AM (2013) Cerebral vascular control is associated with skeletal muscle pH in chronic fatigue syndrome patients both at rest and during dynamic stimulation. Neuroimage: Clin 2:168–173

    Article  Google Scholar 

  • Henderson LA et al (2002) Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging. J Neurophysiol 88:3477–3486. doi:10.1152/jn.00107.2002

    Article  PubMed  Google Scholar 

  • Henderson LA et al (2003) Neural responses during Valsalva maneuvers in obstructive sleep apnea syndrome. J Appl Physiol (1985) 94:1063–1074. doi:10.1152/japplphysiol.00702.2002

    Article  Google Scholar 

  • Hotta H, Uchida S (2010) Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatrics Gerontology Int 10(Suppl 1):S127–136. doi:10.1111/j.1447-0594.2010.00592.x

    Article  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841

    Article  PubMed  Google Scholar 

  • Kalaria RN (2010) Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev 68(Suppl 2):S74–87. doi:10.1111/j.1753-4887.2010.00352.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Kerr SR, Pearce MS, Brayne C, Davis RJ, Kenny RA (2006) Carotid sinus hypersensitivity in asymptomatic older persons: implications for diagnosis of syncope and falls. Arch Intern Med 166:515–520. doi:10.1001/archinte.166.5.515

    Article  PubMed  Google Scholar 

  • Lanterna LA, Lunghi A, Martchenko S, Gritti P, Bonaldi G, Biroli F (2011) Cerebral watershed hypoperfusion in subarachnoid hemorrhage: computed tomography perfusion analysis. J Neurosurg 114:961–968. doi:10.3171/2010.8.JNS091766

    Article  PubMed  Google Scholar 

  • Mandell DM, Han JS, Poublanc J, Crawley AP, Kassner A, Fisher JA, Mikulis DJ (2008) Selective reduction of blood flow to white matter during hypercapnia corresponds with leukoaraiosis. Stroke J Cerebral Circ 39:1993–1998. doi:10.1161/STROKEAHA.107.501692

    Article  Google Scholar 

  • Mangla R, Kolar B, Almast J, Ekholm SE (2011) Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics: Rev Publ Radiological Soc North Am Inc 31:1201–1214. doi:10.1148/rg.315105014

    Article  Google Scholar 

  • Meyer JS, Gotoh F, Takagi Y, Kakimi R (1966) Cerebral hemodynamics, blood gases, and electrolytes during breath-holding and the Valsalva maneuver. Circulation 33:II35–48

    Article  CAS  PubMed  Google Scholar 

  • Newton JL et al (2008) Cognitive impairment in primary biliary cirrhosis: symptom impact and potential etiology. Hepatology 48:541–549. doi:10.1002/hep.22371

    Article  PubMed  Google Scholar 

  • O'Sullivan M (2008) Leukoaraiosis Practical neurology 8:26–38. doi:10.1136/jnnp.2007.139428

  • Pantoni L (2002) Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis 13(Suppl 2):7–10

    Article  PubMed  Google Scholar 

  • Perlmuter LC, Sarda G, Casavant V, Mosnaim AD (2013) A review of the etiology, asssociated comorbidities, and treatment of orthostatic hypotension. Am J Ther 20:279–291. doi:10.1097/MJT.0b013e31828bfb7f

    Article  PubMed  Google Scholar 

  • Pfefferbaum A, Chanraud S, Pitel AL, Shankaranarayanan A, Alsop DC, Rohlfing T, Sullivan EV (2010) Volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Res 182:266–273. doi:10.1016/j.pscychresns.2010.02.010

    Article  PubMed Central  PubMed  Google Scholar 

  • Richardson J, Kerr SR, Shaw F, Kenny RA, O’Brien JT, Thomas AJ (2009) A study of orthostatic hypotension in late-life depression. Am J Geriatric Psychiatry: Off J Am Assoc Geriatric Psychiatry 17:996–999. doi:10.1097/JGP.0b013e3181b4bf35

    Article  Google Scholar 

  • Rodriguez G et al (1991) Regional cerebral blood flow asymmetries in a group of 189 normal subjects at rest. Brain Topogr 4:57–63

    Article  CAS  PubMed  Google Scholar 

  • Shen J (2005) https://www.mathworks.co.uk/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi:10.1002/hbm.10062

    Article  PubMed  Google Scholar 

  • Smith SM et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL NeuroImage 23 Suppl 1:S208–219. S1053-8119(04)00393-3 [pii] doi:10.1016/j.neuroimage.2004.07.051

  • Smith SM, Brady JM (1997) SUSAN - a new approach to low level image processing. J Comput Vision 23:45–78

    Article  Google Scholar 

  • Taylor D (1996) The Valsalva manoeuvre: a critical review. Underwater Med Soc 26:8–13

    Google Scholar 

  • Topakian R, Barrick TR, Howe FA, Markus HS (2010) Blood–brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 81:192–197. doi:10.1136/jnnp.2009.172072

    Article  CAS  PubMed  Google Scholar 

  • Waldstein SR, Siegel EL, Lefkowitz D, Maier KJ, Brown JR, Obuchowski AM, Katzel LI (2004) Stress-induced blood pressure reactivity and silent cerebrovascular disease. Stroke J Cerebral Circ 35:1294–1298. doi:10.1161/01.STR.0000127774.43890.5b

    Article  Google Scholar 

  • Wardlaw JM, Sandercock PA, Dennis MS, Starr J (2003) Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke J Cerebral Circ 34:806–812. doi:10.1161/01.STR.0000058480.77236.B3

    Article  CAS  Google Scholar 

  • Wentland AL, Rowley HA, Vigen KK, Field AS (2010) Fetal origin of the posterior cerebral artery produces left-right asymmetry on perfusion imaging. AJNR Am J Neuroradiology 31:448–453. doi:10.3174/ajnr.A1858

    Article  CAS  Google Scholar 

  • Woolrich MW et al. (2009) Bayesian analysis of neuroimaging data in FSL NeuroImage 45:S173–186. S1053-8119(08)01204-4 [pii] doi:10.1016/j.neuroimage.2008.10.055

Download references

Acknowledgments

The research was funded by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust, the British Geriatric Society and Research into Ageing Fund; a fund set up and managed by Age UK. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The authors are grateful to Dr. Michael Firbank (Newcastle University) for providing us with his code for WMH segmentation and guidelines for its usage and Dr. Andreas Finkelmeyer (Newcastle University) for his valuable comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwo Bohr.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohr, I., McDonald, C., He, J. et al. Brain oxygenation responses to an autonomic challenge: a quantitative fMRI investigation of the Valsalva manoeuvre. AGE 37, 91 (2015). https://doi.org/10.1007/s11357-015-9833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9833-6

Keywords

Navigation