Skip to main content
Log in

Potential biomonitoring of atmospheric carbon dioxide in Coffea arabica leaves using near-infrared spectroscopy and partial least squares discriminant analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The potencial of Coffea arabica leaves as bioindicators of atmospheric carbon dioxide (CO2) was evaluated in a free-air carbon dioxide enrichment (FACE) experiment by using near-infrared reflectance (NIR) spectroscopy for direct analysis and partial least squares discriminant analysis (PLS-DA). A supervised classification model was built and validated from the spectra of coffee leaves grown under elevated and current CO2 levels. PLS-DA allowed correct test set classification of 92% of the elevated-CO2 level leaves and 100% of the current-CO2 level leaves. The spectral bands accounting for the discrimination of the elevated-CO2 leaves were at 1657 and 1698 nm, as indicated by the variable importance in the projection (VIP) score together with the regression coefficients. Seven months after suspension of enriched CO2, returning to current-CO2 levels, new spectral measurements were made and subjected to PLS-DA analysis. The predictive model correctly classified all leaves as grown under current-CO2 levels. The fingerprints suggest that after suspension of elevated-CO2, the spectral changes observed previously disappeared. The recovery could be triggered by two reasons: the relief of the stress stimulus or the perception of a return of favorable conditions. In addition, the results demonstrate that NIR spectroscopy can provide a rapid, nondestructive, and environmentally friendly method for biomonitoring leaves suffering environmental modification. Finally, C. arabica leaves associated with NIR and mathematical models have the potential to become a good biomonitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida SM, Wolterbeek H, Markert B, Loppi S (2017) Biomonitoring of atmospheric pollution: possibilities and future challenges. Environ Sci Pollut Res 24:11865–11866

    Article  Google Scholar 

  • Alves FCGBS, Valderrama P (2015) Ultraviolet spectroscopy and supervised pattern recognition methods for authentication of transgenic and non-transgenic soybean oils. Anal Methods 7:9702–9706

    Article  CAS  Google Scholar 

  • Badamasi H (2017) Biomonitoring of air pollution using plants. MAYFEB J Environ Sci 2:27–39

    Google Scholar 

  • Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798

    Article  CAS  Google Scholar 

  • Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemom 17:166–173

    Article  CAS  Google Scholar 

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777

    Article  CAS  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Bevilacqua M, Bucci R, Magrì AD, et al (2013) Classification and class-modelling. In: Marini F (ed) Chemometrics in food chemistry, 1st. Rome, pp 171–233

  • Biancolillo A, Firmani P, Bucci R, Magrì A, Marini F (2019) Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchem J 145:252–258

    Article  CAS  Google Scholar 

  • Bonanno G, Raccuia SA (2018) Seagrass Halophila stipulacea: capacity of accumulation and biomonitoring of trace elements. Sci Total Environ 633:257–263

    Article  CAS  Google Scholar 

  • Bonanno G, Borg JA, Di Martino V (2017) Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment. Sci Total Environ 576:796–806

    Article  CAS  Google Scholar 

  • Botelho BG, Reis N, Oliveira LS, Sena MM (2015) Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem 181:31–37

    Article  CAS  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A et al (2018) Declining oxygen in the global ocean and coastal waters. Science 359:1–11

    Article  CAS  Google Scholar 

  • Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemom 28:213–225

    Article  CAS  Google Scholar 

  • Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A (2007) Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ Pollut 149:239–245

    Article  CAS  Google Scholar 

  • Carlos C, Maretto DA, Poppi RJ, Sato MIZ, Ottoboni LMM (2011) Fourier transform infrared microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. Microchem J 99:15–19

    Article  CAS  Google Scholar 

  • Casale M, Bagnasco L, Giordani P, Mariotti MG, Malaspina P (2015) NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution. Chemosphere 134:355–360

    Article  CAS  Google Scholar 

  • Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:1–14

    Article  CAS  Google Scholar 

  • de Santana FB, Gontijo LC, Mitsutake H et al (2016) Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chem 209:228–233

    Article  CAS  Google Scholar 

  • Delaroza F, Rakocevic M, Malta GB, Sanchez PM, Bruns RE, Scarminio IS (2017) Factorial design effects of plant density, pattern and light availability on the caffeine, chlorogenic acids, lipids, reducing sugars and ash contents of Coffea arabica L. beans and leaves. Anal Methods 9:3612–3618

    Article  CAS  Google Scholar 

  • Dominguez-Vidal A, Pantoja-De La Rosa J, Cuadros-Rodríguez L, Ayora-Cañada MJ (2016) Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy. Food Chem 190:122–127

    Article  CAS  Google Scholar 

  • El Hayek E, El Samrani A, Lartiges B et al (2015) Potential of Opuntia ficus-indica for air pollution biomonitoring: a lead isotopic study. Environ Sci Pollut Res 22:17799–17809

    Article  CAS  Google Scholar 

  • Fernández-Cabanás VM, Garrido-Varo A, Pérez-Marín D, Dardenne P (2006) Evaluation of pretreatment strategies for near-infrared spectroscopy calibration development of unground and ground compound feedingstuffs. Appl Spectrosc 60:17–23

    Article  Google Scholar 

  • Fleck A d S, Carneiro MFH, Barbosa F Jr et al (2016) Monitoring an outdoor smoking area by means of PM2.5 measurement and vegetal biomonitoring. Environ Sci Pollut Res 23:21187–21194

    Article  CAS  Google Scholar 

  • Ghini R, Torre-neto A, Dentzien AFM (2015) Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim Chang 132:307–320. https://doi.org/10.1007/s10584-015-1422-2

    Article  Google Scholar 

  • Hatumura PH, de Oliveira GS, Marcheafave GG, Rakocevic M, Bruns RE, Scarminio IS, Terrile AE (2018) Chemometric analysis of 1H NMR fingerprints of Coffea arabica green bean extracts cultivated under different planting densities. Food Anal Methods 11:1906–1914

    Article  Google Scholar 

  • Isaksson T, Naes T (1988) The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl Spectrosc 42:1273–1284

    Article  CAS  Google Scholar 

  • Ito A (2018) Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced emissions and non-CO2 carbon export flows: a global model assessment. Earth Syst Dyn Discuss 1–39. https://doi.org/10.5194/esd-2018-62

  • Joët T, Salmona J, Laffargue A et al (2010) Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation. Plant Cell Environ 33:1220–1233

    Google Scholar 

  • Kalschne DL, Viegas MC, De Conti AJ et al (2018) Steam pressure treatment of defective Coffea canephora beans improves the volatile profile and sensory acceptance of roasted coffee blends. Food Res Int 105:393–402

    Article  CAS  Google Scholar 

  • Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  • Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, Tømmervik H, Zagajewski B, Ziółkowski D, Jerz D, Zielińska M, Krems P, Godyń P, Marciniak M, Świsłowski P (2018) Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ 627:438–449

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM (1972) Acid rain. Environ Sci Policy Sustain Dev 14:33–40

    Article  CAS  Google Scholar 

  • Lima JS (2001) Processos biológicos e biomonitoramento aspectos bioquímicos e morfológicos. In: Maia NB, Martos HL, Barrella W (eds) Indicadores ambientais: conceitos e aplicações, 1st edn. EDUC, São Paulo, pp 95–115

    Google Scholar 

  • Lodenius M (2013) Use of plants for biomonitoring of airborne mercury in contaminated areas. Environ Res 125:113–123

    Article  CAS  Google Scholar 

  • Malaspina P, Casale M, Malegori C, Hooshyari M, di Carro M, Magi E, Giordani P (2018) Combining spectroscopic techniques and chemometrics for the interpretation of lichen biomonitoring of air pollution. Chemosphere 198:417–424

    Article  CAS  Google Scholar 

  • Marcheafave GG, Tormena CD, Pauli ED, Rakocevic M, Bruns RE, Scarminio IS (2019) Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchem J 146:713–721

    Article  CAS  Google Scholar 

  • Marquetti I, Link JV, Lemes ALG, Scholz MBS, Valderrama P, Bona E (2016) Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of Arabica coffee. Comput Electron Agric 121:313–319

    Article  Google Scholar 

  • Mazur L, Peralta-Zamora PG, Demczuk B, Ribani RH (2014) Application of multivariate calibration and NIR spectroscopy for the quantification of methylxanthines in yerba mate (Ilex paraguariensis). J Food Compos Anal 35:55–60

    Article  CAS  Google Scholar 

  • Mees C, Souard F, Delporte C, Deconinck E, Stoffelen P, Stévigny C, Kauffmann JM, de Braekeleer K (2018) Identification of coffee leaves using FT-NIR spectroscopy and SIMCA. Talanta 177:4–11

    Article  CAS  Google Scholar 

  • Nagelkerken I, Connell SD (2015) Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci 112:13272–13277

    Article  CAS  Google Scholar 

  • Páscoa RNMJ, Sarraguça MC, Magalhães LM, et al (2014) Use of near-infrared spectroscopy for coffee beans quality assessment. In: Coffee in health and disease prevention. Elsevier Inc., pp 933–942

  • Pasquini C (2003) Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J Braz Chem Soc 14:198–219

    Article  CAS  Google Scholar 

  • Rakocevic M, Matsunaga FT (2018) Variations in leaf growth parameters over the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration. Ann Bot 122:117–131

    Article  Google Scholar 

  • Rakocevic M, Ribeiro RV, Marchiori PER et al (2018) Structural and functional changes in coffee trees after four years under free air CO2 enrichment. Ann Bot 121:1065–1078

    Article  CAS  Google Scholar 

  • Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812

    Article  CAS  Google Scholar 

  • Saitanis CJ, Bari SM, Burkey KO, Stamatelopoulos D, Agathokleous E (2014) Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environ Sci Pollut Res 21:13560–13571

    Article  CAS  Google Scholar 

  • Sanchez PM, Pauli ED, Scheel GL et al (2018) Irrigation and light access effects on Coffea arabica L. leaves by FTIR-chemometric analysis. J Braz Chem Soc 29:168–176

    CAS  Google Scholar 

  • Sato S, Yanagisawa S (2014) Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis. Plant Cell Physiol 55:306–319

    Article  CAS  Google Scholar 

  • Scheel GL, Pauli ED, Rakocevic M, Bruns RE, Scarminio IS (2016) Environmental stress evaluation of Coffea arabica L leaves from spectrophotometric fingerprints by PCA and OSC-PLS-DA. Arab J Chem 7. https://doi.org/10.1016/j.arabjc.2016.05.014

  • Solomon S, Plattner G, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709

    Article  CAS  Google Scholar 

  • Temmerman L De, Bell JNB, Garrec JP et al (2004) Biomonitoring of air pollutants with plants - Considerations for the future. In: Klumpp A, Ansel W, Klumpp G (eds) Urban air pollution, Bioindication and Environmental Awareness, 1st edn. Cuvillier Verlag, Göttingen, pp 337–374

  • Terrile AE, Marcheafave GG, Oliveira GS et al (2016) Chemometric analysis of UV characteristic profile and infrared fingerprint variations of Coffea arabica green beans under different space management treatments. J Braz Chem Soc 27:1254–1263

    CAS  Google Scholar 

  • Tormena CD, Marcheafave GG, Rakocevic M, Bruns RE, Scarminio IS (2019) Sequential mixture design optimization for divergent metabolite analysis: enriched carbon dioxide effects on Coffea arabica L. leaves and buds. Talanta 191:382–389

    Article  CAS  Google Scholar 

  • Treharne R, Bjerke JW, Tømmervik H, Stendardi L, Phoenix GK (2018) Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob Chang Biol 25:1–15. https://doi.org/10.1111/gcb.14500

    Article  Google Scholar 

  • Valderrama L, Valderrama P (2016) Nondestructive identification of blue pen inks for documentoscopy purpose using iPhone and digital image analysis including an approach for interval confidence estimation in PLS-DA models validation. Chemom Intell Lab Syst 156:188–195

    Article  CAS  Google Scholar 

  • Vitale R, Bevilacqua M, Bucci R, Magrì AD, Magrì AL, Marini F (2013) A rapid and non-invasive method for authenticating the origin of pistachio samples by NIR spectroscopy and chemometrics. Chemom Intell Lab Syst 121:90–99

    Article  CAS  Google Scholar 

  • Want E, Masson P (2011) Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol Biol 708:277–298

    Article  CAS  Google Scholar 

  • Wold S, Johansson E, Cocchi M (1993) PLS: partial least squares projections to latent structures. In: QSAR 3D em drug design: Teoria, Métodos e Aplicações. pp 523–550

  • Workman J, Weyer L (2007) Practical guide to interpretive near-infrared spectroscopy. Boca Raton, Florida

Download references

Acknowledgments

The authors are thankful to Dr. Miroslava Rakocevic, Embrapa Environment, Jaguariúna, Brazil, for supplying the coffee leaf samples and the photos used in this work.

Funding

This work was funded by the Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Process: 150107/2018-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gustavo Galo Marcheafave or Ieda Spacino Scarminio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tormena, C.D., Marcheafave, G.G., Pauli, E.D. et al. Potential biomonitoring of atmospheric carbon dioxide in Coffea arabica leaves using near-infrared spectroscopy and partial least squares discriminant analysis. Environ Sci Pollut Res 26, 30356–30364 (2019). https://doi.org/10.1007/s11356-019-06163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06163-1

Keywords

Navigation