Skip to main content
Log in

One-pot synthesis of lightly doped Zn1−x Cu x O and Au–Zn1−x Cu x O with solar light photocatalytic activity in liquid phase

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We report on the facile and low-temperature one-pot chemical synthesis of lightly doped Zn1−x Cu x O and hybrid Au–Zn1−x Cu x O photocatalysts with low Cu molar content (0 < x < 0.7%) using 1,3-propanediol polyol simultaneously as solvent, reducing and a stabilizing agent, without any final thermal treatment. The photocatalysts have been characterized by X-ray diffraction, N2 adsorption study, UV–vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy, and transmission electron microscopy. The lightly doped hybrid Au–Zn1−x Cu x O photocatalysts consisted in faceted quasi-spherical large-size Au nanoparticle cores surrounded by closely packed small-size Zn1−x Cu x O nanoparticles. Taking the photocatalytic degradation of Diuron under solar light as liquid-phase test reaction, the lightly doped Au–Zn1−x Cu x O hybrid photocatalysts with optimized x = 0.09% Cu content showed strongly enhanced photocatalytic activity when compared to the bare ZnO counterpart. The observed 16-fold higher degradation rate constant resulted jointly from the light doping of ZnO with Cu to form Zn1−x Cu x O photocatalyst and further from the addition of gold nanoparticles allowing interfacial oxide-to-metal electron transfer within the hybrid Au–Zn1−x Cu x O photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen H, Cullen DA, Larese JZ (2015) Highly efficient selective sydrogenation of cinnamaldehyde to cinnamyl alcohol over gold supported on zinc oxide material. J Phys Chem C 119:28885–28894

    Article  CAS  Google Scholar 

  • Chen PK, Lee GJ, Anadan S, Wu JJ (2012) Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II. Mater Sci Eng B 177:190–196

    Article  CAS  Google Scholar 

  • Chen PK, Lee GJ, Davies SH, Masten SJ, Amutha R, Wu JJ (2013) Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of orange II dye. Mater Res Bull 48:2375–2382

    Article  CAS  Google Scholar 

  • Chen Y, Zeng D, Zhang K, Lu A, Wang L, Peng DL (2014) Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties. Nano 6:874–881

    CAS  Google Scholar 

  • Chiou J, Ray S, Tsai H, Pao C, Chien F, Pong W, Tsai M, Wu J, Tseng C, Chen C, Lee J, Guo JH (2007) Charge transfer in nanocrystalline-Au/ZnO nanorods investigated by x-ray spectroscopy and scanning photoelectron microscopy. J Appl Phys Lett 90:192112–192114

    Article  Google Scholar 

  • Chong M, Jin B, Chow C, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Costi R, Cohen G, Salant A, Rabani E, Banin U (2009) Electrostatic force microscopy study of single Au-CdSe hybrid nanodumbbells: evidence for light-induced charge separation. Nano Lett 9:2031–2039

    Article  CAS  Google Scholar 

  • Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    Article  CAS  Google Scholar 

  • Dhas V, Muduli S, Lee W, Han SH, Ogale S (2008) Enhanced conversion efficiency in dye-sensitized solar cell based on ZnO bifunctional nanoflowers loaded with gold nanoparticles. Appl Phys Lett 93:243108–243111

    Article  Google Scholar 

  • Dong A, Chen J, Vora P, Kikkawa J, Murray C (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 446:474–477

    Article  Google Scholar 

  • Donkova B, Vasileva P, Nihtianova D, Velichkova V, Stefanov P, Mehandjiev D (2011) Synthesis, characterisation of Au-ZnO nanocomposites prepared by coprecipitation. J Mater Sci 46:7134–7143

    Article  CAS  Google Scholar 

  • El Madani M, Guillard C, Pérol N, Chovelon JM, El Azzouzi M, Zrineh A, Herrmann JM (2006) Photocatalytic degradation of Diuron in aqueous solution in presence of two industrial titania catalysts, either as suspended powders or deposited on flexible industrial photoresistant papers. Appl Catal B Environ 65:70–76

    Article  CAS  Google Scholar 

  • Field AG, Reed RL, Sawyer TE, Martinez M (1997) Diuron and its metabolites in surface water and ground water by solid phase extraction and in-vial elution. J Agric Food Chem 45:3897–3902

    Article  CAS  Google Scholar 

  • Machuca-Martínez F, Colina-Márquez JA (2011) Effect of the initial pH and the catalyst concentration on TiO2-based photocatalytic degradation of three commercial pesticides. Ingeniería & Desarrollo. Universidad del Norte 29(1):84–100

    Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  • Gomes-Silva C, Juarez R, Marino T, Molinari R, Garcia H (2011) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133(3):595–602

    Article  CAS  Google Scholar 

  • Gooddy DC, Chilton PJ, Harrison I (2002) A field study to assess the degradation and transport of diuron and its metabolites in a calcareous soil. Sci Total Environ 297:67–83

    Article  CAS  Google Scholar 

  • Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  • Haldar KK, Sen T, Patra A (2008) Au@ZnO Core-Shell nanoparticles are efficient energy acceptors with organic dye donors. J Phys Chem C 112:11650–11656

    Article  CAS  Google Scholar 

  • Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin J, Reddy KM (2005) Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B 72:075203–075207

    Article  Google Scholar 

  • Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136:750–757

    Article  CAS  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  • Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Jirkovski J, Faure V, Boule P (1997) Photolysis of Diuron. Pest Manag Sci 50:42–52

    Article  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  • Katsumata H, Sada M, Nakaoka Y, Kaneco S, Suzuki T, Ohta K (2009) Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J Hazard Mater 171:1081–1087

    Article  CAS  Google Scholar 

  • Kortan AR, Hull R, Opila RL, Bawendi MG, Steigrwald ML, Carroll PJ, Brus LE (1990) Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112:1327–1332

    Article  CAS  Google Scholar 

  • Lee JS, Shevchenko EV, Talapin DV (2008) Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J Am Chem Soc 130:9673–9675

    Article  CAS  Google Scholar 

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  Google Scholar 

  • Lee MK, Tu HF (2008) Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts. J Electrochem Soc 155:D758–D762

    Article  CAS  Google Scholar 

  • Liang H, Raitano JM, He G, Akey AJ, Herman IP, Zhang L, Chan S-W (2012) Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J Mater Sci 47:299–307

    Article  CAS  Google Scholar 

  • Li H, Liu ET, Chan FYF, Lu Z, Chen R (2011a) Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatalytic activity. Mater Lett 65:3440–3443

    Article  CAS  Google Scholar 

  • Li P, Wei Z, Wu T, Peng Q, Li Y (2011b) Au-ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133:5660–5663

    Article  CAS  Google Scholar 

  • Liu B, Xu J, Ran S, Wang Z, Chen D, Shen G (2012) High-performance photodetectors, photocatalysts, and gas sensor based on polyol reflux synthesized porous ZnO nanosheets. Cryst Eng Comm 14:4582–4588

    Article  CAS  Google Scholar 

  • Liu Y, Zhong M, Shan G, Li Y, Huang B, Yang G (2008) Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering. J Phys Chem B 112:6484–6489

    Article  CAS  Google Scholar 

  • Maldonado MI, Passarinho PC, Oller I, Gernjak W, Fernández P, Blanco J, Malato S (2007) Photocatalytic degradation of EU priority substances: a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. J Photochem Photobiol A Chem 185:354–363

    Article  CAS  Google Scholar 

  • Malato S, Caceres J, Fernandez-Alba AR, Piedra L, Hernando MD, Aguera A, Vial J (2003) Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ Sci Technol 37:2516–2524

    Article  CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjaket W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  • Mazellier P, Sulzberger B (2001) Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step. Environ Sci Technol 35(16):3314–3320

    Article  CAS  Google Scholar 

  • Menagen G, Macdonald J, Shemesh Y, Popov I, Banin U (2009) Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. J Am Chem Soc 131:17406–17411

    Article  CAS  Google Scholar 

  • Mezni A, Kouki F, Romdhane S, Fonrose BW, Joulie S, Mlayah A, Smiri LS (2012) Facile synthesis of ZnO nanocrystals in Polyol. Mater Lett 86:153–156

    Article  CAS  Google Scholar 

  • Mezni A, Mlayah A, Serin V, Smiri LS (2014) Synthesis of hybrid Au-ZnO nanoparticles using a one pot polyol. Mater Chem Phys 147:496–503

    Article  CAS  Google Scholar 

  • Nalawade P, Mukjerjee T, Kapoor S (2013) Green synthesis of gold nanoparticles using glycerol as a reducing agent. Adv Nanopart 2:78–86

    Article  Google Scholar 

  • Peng L, Zhe W, Tong W, Qing P, Yadong L (2011) Au-ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133:5660–5663

    Article  Google Scholar 

  • Pichat P (1997) In: Ert G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous photocatalysis. VCH-Wiley, Weinheim, pp 2111–2130

    Google Scholar 

  • Pramauro E, Vicenti M, Augugliaro V, Palmisano L (1993) Photocatalytic degradation of monuron in aqueous TiO2 dispersions. Environ Sci Technol 27:1790–1795

    Article  CAS  Google Scholar 

  • Rietveld HM (1967) Method of refining powder diffraction data to find the crystal structure, developed by Hugo M Rietveld. J Appl Crystallogr 22:151–152

    CAS  Google Scholar 

  • Kouamé NA, Robert D, Keller V, Keller N, Pham C, Nguyen P (2012) TiO2/β-SiC foam-structured photoreactor for continuous wastewater treatment. Environ Sci Pollut Res 19:3727–3734

    Article  Google Scholar 

  • Robert D, Malato S (2002) Solar photocatalysis: a clean process for water detoxification. Sci Total Environ 291:85–97

    Article  CAS  Google Scholar 

  • Sambasivam S, Jospeh D. P, Lin J. G, Venkateswaran C (2009) Doping induced magnetism in Co–ZnS nanoparticles. J Solid State Chem 182:2598–2601

  • Sengele A, Herisson A, Colbeau-Justin C, Keller N, Robert D, Keller V (2016) Ta-doped TiO2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant. J Catal 334:129–141

    Article  CAS  Google Scholar 

  • Serpone N, Lawless D, Khairoutdinov R, Pelizzetti E (1995) Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0–13.4 nm). Relevance to heterogeneous photocatalysis. J Phys Chem 99:16655–16661

    Article  CAS  Google Scholar 

  • Shan G, Wang S, Fei X, Liu Y, Yan G (2009) Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection. J Phys Chem B 113:1468–1472

    Article  CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogonides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  • She Z, Liu S, Low M, Zhang S, Liu Z, Mlayah A, Han M-Y (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314

    Article  Google Scholar 

  • Subramanian V, Wolf E, Kamat P (2003) Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and Fermi- Level equilibration J Phys Chem B 107:7479–7485

    CAS  Google Scholar 

  • Tahmasseb LA, Nelieu S, Einhorn KJ (2002) Ozonation of chlorophenylurea pesticides in water: reaction monitoring and degradation pathways. J Sci Total Environ 291:33–34

    Article  Google Scholar 

  • Tomlin CDS (1997) The pesticide manual, 11th edn. British Crop Protection Council, Surrey

    Google Scholar 

  • Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  • Tang T, Hamley IW (2009) Multiple morphologies of gold nano-plates by high-temperature polyol syntheses. Colloids Surf A Physicochem Eng Asp 336:1–7

    Article  CAS  Google Scholar 

  • Udawatte N, Lee M, Kim J, Lee D (2011) Well-defined Au/ZnO nanoparticle composites exhibing enhanced photocatalytic activities. ACS Appl Mater Interfaces 3:4531–4538

    Article  CAS  Google Scholar 

  • Vulliet E, Emmelin C, Chovelon JM, Guillard C, Herrmann JM (2002) Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl Catal B Environ 38(2):127–137

    Article  CAS  Google Scholar 

  • Wang Q, Geng B, Wang S (2009) ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environ Sci Technol 43:8968–88973

    Article  CAS  Google Scholar 

  • Wang X, Xianggui K, Yi Y, Zhang H (2007) Synthesis and characterisation of water-soluble and bifunctional ZnO-Au nanocomposites. J Phys Chem C 111:3836–3841

    Article  CAS  Google Scholar 

  • Wang L, Lou Z, Fei T, Zhang T (2012) Templating synthesis of ZnO hollow nanosphers loaded with Au nanoparticles and their enhanced gas sensing properties. J Mater Chem 22:4767–4771

    Article  CAS  Google Scholar 

  • Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York, Imaging III, pp 441–455

    Book  Google Scholar 

  • Wu JJ, Tseng CH (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B Environ 66:51–57

    Article  CAS  Google Scholar 

  • Yao KX, Liu X, Zhao L, Zeng HC, Han Y (2011) Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination. Nano 3:4195–4200

    CAS  Google Scholar 

  • Yoshioka S, Oba F, Huang R, Tanaka I, Mizoguchi T, Yamamoto T (2008) Atomic structures of supersaturated ZnO–Al2O3 solid solutions. J Appl Phys 103:0143091–0143099

    Article  Google Scholar 

  • Yu H, Ming H, Zhang H, Li H, Pan K, Liu Y, Wang F, Gong J, Kang Z (2012) Au/ZnO nanocomposites: facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater Chem Phys 137:113–117

    Article  CAS  Google Scholar 

  • Zeng J, Huang J, Liu C, Wu C, Lin Y, Wang X, Zhang S, Hou J, Xia Y (2010) Gold-based hybrid nanocrystals through heteregeneous nucleation and growth. Adv Mater 22:1936–1940

    Article  CAS  Google Scholar 

  • Zhang J, Liu X, Wu S, Cao B, Zheng S (2012) One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sens Actuators B: Chem 169:61–66

    Article  CAS  Google Scholar 

  • Zhang J, Tang Y, Lee K, Ouyang M (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327:1634–1638

    Article  CAS  Google Scholar 

  • Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878

    Article  CAS  Google Scholar 

  • Zhao X, Wu Y, Hao X (2013) Electrodeposition synthesis of Au-ZnO hybrid nanowires and their photocatalytic properties. Int J Electrochem Sci 8:3349–3356

    CAS  Google Scholar 

Download references

Acknowledgements

Anis Fkiri gratefully acknowledges the support of the Ministry of Higher Education and Scientific Research of Tunisia. The work was supported by the French Agence Nationale de la Recherche under the reference ANR-13-ECOT-010. K. Parkhomenko (ICPEES) is thanked for helping in some porosimetry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Keller.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(PDF 20 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fkiri, A., Santacruz, M.R., Mezni, A. et al. One-pot synthesis of lightly doped Zn1−x Cu x O and Au–Zn1−x Cu x O with solar light photocatalytic activity in liquid phase. Environ Sci Pollut Res 24, 15622–15633 (2017). https://doi.org/10.1007/s11356-017-9067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9067-5

Keywords

Navigation