Skip to main content

Advertisement

Log in

The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

One of the cheapest, environmentally friendly methods for cleaning an environment polluted by heavy metals is phytoextraction. It builds on the uptake of pollutants from the soil by the plants, which are able to grow under conditions of high concentrations of toxic metals. The aim of this work was to assess the possibility of growing and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita cultivated on two different soils contaminated with five heavy metals simultaneously: Cd, Cu, Ni, Pb, and Zn. A 3-year microplot experiment with two perennial energy crops, M. x giganteus and S. hermaphrodita, was conducted in the experimental station of IUNG-PIB in Poland (5° 25′ N, 21° 58 ‘E), in the years of 2008–2010. Miscanthus was found more tolerant to concomitant soil contamination with heavy metals and produced almost double biomass than Sida in all three tested years, independent of soil type. Miscanthus collected greater amount of heavy metals (except for cadmium) in the biomass than Sida. Both energy crops absorb high levels of zinc, lower levels of lead, copper, and nickel, and absorbed cadmium at least, generally more metals were taken from the sandy soil, where plants also yielded better. Photosynthesis net rate of Miscanthus was on average 40% higher compared to Sida. Obtained results indicate that M. x giganteus and S. hermaphrodita can successfully be grown on moderately contaminated soil with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson‐Teixeira KJ, Davis SC, Masters MDD, Evan H (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1:75–96

    Article  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid A, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  CAS  Google Scholar 

  • Assunçao AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders strategies in response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Brosse N, Dufour A, Meng XZ, Sun QN, Ragauskas A (2016) Miscanthus: a fast‐growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6:580–598

    Article  Google Scholar 

  • Burzyński M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42(4):505–510

    Article  Google Scholar 

  • Chłopecka A, Adriano DC (1997) Zinc uptake by plants an amended polluted soils. Soil Sci and Plant Nutr 43:1031–1036

    Article  Google Scholar 

  • Di Baccio D, Tognetti R, Sebastiani L, Vitagliano C (2003) Responses of Populus deltoides x Populus nigra (Populus x euramericana) clone I-214 to high zinc concentrations. New Phytol 159:443–452

    Article  CAS  Google Scholar 

  • DIN 51731. Wood pellet standards. Germany. CERTCO Deutsches, Institut für Normung (DIN) (in German)

  • European Parliament Directive of The European Parliament and of The Council (2009) of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union OJ L 140, 5.6.2009:16–62

  • Faber A, Kuś J, Matyka M (2008) Crop cultivation for energy production purposes. PKPP Lewiatan, Vattenfall (in Polish)

    Google Scholar 

  • Farage PK, Blowers DA, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus×giganteus. Plant Cell and Environ 29:720–728

    Article  CAS  Google Scholar 

  • Fischer G, Prieler S, van Velthuizen H (2005) Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass Bioenerg 28:119–132

    Article  Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollul 141:387–395

    Article  CAS  Google Scholar 

  • Gisbert C, Clemente R, Navarro-Aviñó J, Baixauli C, Ginér A et al (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56:19–27

    Article  CAS  Google Scholar 

  • Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, et al. (2010) Chapter 3—Miscanthus: a promising biomass crop in advances in botanical research ed. D Jean-Claude Kader and Michel:75–137 (Academic Press)

  • Kabala C, Karczewska A, Kozak M (2010) Energetic plants in reclamation and management of degraded soils. Zesz Nauk UP Wroc Rol XCVI 576:97–118

    Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Motowiecka-Terelak T, Piotrowska M, Terelak H, Witek T (1993) Assessment of contamination level of soil and plants with heavy metals and sulphur, IUNG Pulawy Publisher, P(53):1–20 ( in Polish)

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer Verlang, Heidelberg

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Biogeochemistry of trace elements. PWN Warsaw (in Polish)

  • Kocon A, Matyka M (2012) Phytoextractive potential of Miscanthus x giganteus and Sida hermaphrodita growing under moderate contamination of soil with Zn and Pb. J Food Environ 10(2):1253–1256

    CAS  Google Scholar 

  • Kołodziej B, Antonkiewicz J, Sugier D (2016) Miscanthus x giganteus as a biomass feedstock grown on municipal sewage sludge. Ind Crop Prod 81:72–82

    Article  Google Scholar 

  • Koopmans GF, Römkens PFAM, Song J, Temminghoff EJM, Japenga J (2007) Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water Air Soil Pollut 181:355–371

    Article  CAS  Google Scholar 

  • Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus x giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res. doi:10.1007/s11356-015-4439

    Google Scholar 

  • Korzeniowska J, Stanislawska Glubiak E, Igras J (2011) Applicability of energy crops for metal phytostabilization of soils moderately contaminated with copper, nickel and zinc. J Food Agric Environ 9(3–4):693–697

    CAS  Google Scholar 

  • Kuboi T, Noguchi A, Yazaki A (1986) Family–dependent cadmium accumulation characteristics in higher plants. Plant Soil 92:405–415

    Article  CAS  Google Scholar 

  • Laureysens I, De Temmerman L, Hastir T, Van Gysel M, Ceulemans R (2005) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environ Pollut 133:541–551

    Article  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Li C, Xiao B, Wang QH, Yao SH, Wu JY (2014) Phytoremediation of Zn and Cr-contaminated soil using two promising energy grasses. Water Air Soil Pollut 225:2027. doi:10.1007/s11270-014-2027-5

    Article  Google Scholar 

  • Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2004) Pb toxicity, uptake and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  Google Scholar 

  • Leonardo SD, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90

    Article  Google Scholar 

  • Malik RN, Husain SZ, Nazir I (2010) Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot 42(1):291–301

    CAS  Google Scholar 

  • Marín F, Sánchez JL, Arauzo J, Fuertes R, Gonzalo A (2009) Semichemical pulping of Miscanthus giganteus. Effect of pulping conditions on some pulp and paper properties. Bioresour Technol 100:3933–3940

    Article  Google Scholar 

  • Matyka M (2013) Production and economic aspects of cultivation of perennial crops for energy purposes. Monographs and dissertations. IUNG-PIB Puławy 35:1–98 (in Polish)

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, FMG T (2010) The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  • Mleczek M, Lukaszewski M, Kaczmarek Z, Rissmann I, Golinski P (2009) Efficiency of selected heavy matals acccumulation by Salix viminalis roots. Environ Exp Bot 65:48–53

    Article  CAS  Google Scholar 

  • Mojiri A (2011) The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. J Biol Environ Sci 5:17–22

    Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agri Biol 1:5–11

    Google Scholar 

  • Naidu SL, Long SP (2004) Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis. Planta 220:145–155

    Article  CAS  Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63(3):299–311 https://dx.doi.org/10.1590/S0103-90162006000300014

    Article  Google Scholar 

  • Nawab J, Khan S, Aamir M, Shamshad I, Qamar Z et al (2016) Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environ Sci and Pollut Res 23:2381–2390

    Article  CAS  Google Scholar 

  • Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–12s

    Article  CAS  Google Scholar 

  • Nsanganwimana F, Pourrut B, Waterlot C, Louvel B, Bidar G, Labidi S, Fontaine J, Muchembled J, Lounes-Hadj Sahraoui A, Fourrier H, Douay F (2015) Metal accumulation and shoot yield of Miscanthus x giganteus growing in contaminated agricultural soils: insights into agronomic practices. Agric Ecosyst Environ 213:61–71

    Article  CAS  Google Scholar 

  • Oleszek W, Terelak H, Maliszewska-Kordybach B, Kukuła S (2003) Soil, food and agroproduct contamination monitoring in Poland. Polish J Environ Stud 12(3):261–268

    CAS  Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sustain Energy Rev 54:58–73

    Article  Google Scholar 

  • Peng KJ, Luo CL, Chen YH, Wang GP, Li XD, Shen ZG (2009) Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils. Bull Environ Contam Toxicol 83:260–264

    Article  CAS  Google Scholar 

  • Pikuła D, Stępień W (2007) The influence of soil pH on the uptake of heavy metals by plants. Fragm Agronom 2(94):227–237 (in Polish)

    Google Scholar 

  • Placek A, Grobelak A, Kacprzak M (2016) Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytorem 18:605–618

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  Google Scholar 

  • Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, Van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytorem 13:194–207

    Article  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effects of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Sękara A, Poniedziałek M, Ciura J, Jędrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14(4):509–516

    Google Scholar 

  • Spiak Z (1998) The influence of soil pH on plant zinc uptake. Zesz Probl Post Nauk Rol 456:439–443 (in Polish)

    Google Scholar 

  • Stanislawska-Glubiak E, Korzeniowska J, Kocon A (2012) Effect of the reclamation of heavy metal-contaminated soil on growth of energy willow. Pol J Environ Stud 21(10):187–192

    CAS  Google Scholar 

  • Stanislawska-Glubiak E, Korzeniowska J, Kocon A (2015) Effect of peat on the accumulation and translocation of heavy metals by maize growth in contaminated soils. Environ Sci Pollut Res 22:4706–4714

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation, an ecological solution to organic contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Techer D, Martinez-Chois C, Laval-Gilly P, Henry S, Bennasroune A et al (2012) Assessment of Miscanthus × giganteus for rhizoremediation of long term PAH contaminated soils. Appl Soil Ecol 62:42–49

    Article  Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Rutterns A, Elst K, Tack FMG, Vangroncveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landscape Manage 15(4):227–236

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vassilev A, Schwitzguébel JP, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal contaminated soils. Scientific World J 4:9–34

    Article  CAS  Google Scholar 

  • Wanat N, Austruy A, Joussein E, Soubrand M, Hitmi A et al (2013) Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. J Geochem Explor 126–127:78–84

    Article  Google Scholar 

  • Waterlot C, Pruvot CH, Douay F (2011) Effects of phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils. Ecol Eng 37:1081–1093

    Article  Google Scholar 

  • Wisz J, Matwiejew A (2005) Biomass—research laboratory in terms of suitability for combustion. Energetyka 9:631–636 (in Polish)

    Google Scholar 

  • Wrzosek J, Gawroński S, Gworek B (2008) Use of crop plant cultivate for energy and phytoremediation. Ochr Środ i Zas Natur 37:139–151 (in Polish)

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. doi:10.1016/j.scitotenv.2006.01.016

    Article  CAS  Google Scholar 

  • Zhang L, Zhang H, Guo W, Tian Y, Chen Z, Wei X (2012) Photosynthetic responses of energy plant maize under cadmium contamination stress. Adv Matter Res 356-360:283–286. doi:10.4028/www.scientific.net/AMR.356-360.283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Jurga.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocoń, A., Jurga, B. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ Sci Pollut Res 24, 4990–5000 (2017). https://doi.org/10.1007/s11356-016-8241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8241-5

Keywords

Navigation