Skip to main content

Advertisement

Log in

Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007–August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440–870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440–870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α′) were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3–4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adesina AJ, Kumar KR, Sivakumar V, Griffith D (2014) Direct radiative forcing of urban aerosols over Pretoria (25.75°S, 28.28°E) using AERONET Sunphotometer data: first scientific results and environmental impact. J Environ Sci 26:2459–2474

    Article  Google Scholar 

  • Alam K, Trautmann T, Blaschke T (2011) Aerosol optical properties and radiative forcing over mega-city, Karachi. Atmos Res 101:773–782

    Article  CAS  Google Scholar 

  • Alam K, Trautmann T, Blaschke T, Majid H (2012) Aerosol optical and radiative properties during summer and winter season over Lahore and Karachi. Atmos Environ 50:234–245

    Article  CAS  Google Scholar 

  • Angstrom A (1964) The parameters of atmospheric turbidity. Tellus 16:64–75

    Article  Google Scholar 

  • Brock CA, Wagner NL, Anderson BE, Beyersdort A et al (2015) Aerosol optical properties in the southeastern United States in summer—part 2: sensitivity of aerosol optical depth to relative humidity and aerosol parameters. Atmos Chem Phys Discuss 15:31471–31499

    Article  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE et al (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  CAS  Google Scholar 

  • Che H, Zhang XY, Chen HB, Damiri B, Goloub P, Li ZQ, Zhang XC, Wei Y, Zhou HG, Dong F, et al (2009) Instrument calibration and aerosol optical depth validation of the China aerosol remote sensing network. J Geophys Res 114

  • Che H, Xia X, Zhu J, Wang H, Wang Y, Sun J, Zhang X, Shi G (2014) Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ Sci Pollut Res. doi:10.1007/s11356-014-3415-5

  • Che H, Zhao H, Wu Y, Xia X, Zhu J, Dubovik O et al (2015) Application of aerosol optical properties to estimate aerosol type from ground-based remote sensing observation at urban area of northeastern China. J Atmos Solar Terres Phys 132:37–47

    Article  CAS  Google Scholar 

  • Chen J, Jiang H, Wang B et al (2012) Aerosol optical properties from sun photometric measurements in Hangzhou district, China. Int J Remote Sens 33:2451–2461

    Article  Google Scholar 

  • Cheng T, Xu C, Duan J, Wang Y et al (2015) Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai. Atmos Environ 123:315–326

    Article  CAS  Google Scholar 

  • Deng J, Wang T, Jiang Z et al (2012) Characterization of visibility and its affecting factors over Nanjing, China. Atmos Res 101:681–691

    Article  Google Scholar 

  • Di Sarra A, di Biagio C, Meloni D, Monteleone F, Pace G, Pugnaghi S, Sferlazzo D (2011) Shortwave and longwave radiative effects of the intense Saharan dust event of 25–26 March 2010 at Lampedusa (Mediterranean Sea). J Geophys Res 116:D23209. doi:10.1029/2011JD016238

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory). Model access via the NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html

  • Dubovik O, King MA (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696

    Article  Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104. http://dx.doi.org/10.1029/1999JD900923

  • Eck TF, Holben BN, Dubovik O, Smirnov A, Glob P, Chen HB, et al (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110. http://dx.doi.org/10.1029/2004JD005274

  • El-Metwally M, Alfaro SC, Wahab MMA, Favez O, Mohammed Z, Chatenet B (2011) Aerosol properties and associated radiative effects over Cairo (Egypt). Atmos Res 99:263–276

    Article  CAS  Google Scholar 

  • Esteve AR, Estelles V, Utrillas MP, Martinez-Lozano JA (2014) Analysis of the aerosol radiative forcing over a Mediterranean urban coastal site. Atmos Res 137:195–204

    Article  Google Scholar 

  • Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, et al (2012) An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res 117. http://dx.doi.org/10.1029/2012JD018127

  • Gobbi GP, Kaufman YJ, Koren I, Eck TF (2007) Classification of aerosol properties derived from AERONET direct sun data. Atmos Chem Phys 7:453–458

    Article  CAS  Google Scholar 

  • Goloub P, Li Z, Dubovik O, Blarel L, Podvin T, Jankowiak I, Lecoq R, Deroo C, Chatenet B, Morel JP, Cuevas E, Ramos R (2007) PHOTONS/AERONET sunphotometer network overview: description, activities, results. Proc SPIE 6936, doi:10.117/12.783171

  • Han Y, Wu YH, Wang T, Xie C, Zhao K, Zhuang BL, Li S (2015) Characterizing a persistent Asian dust transport event: optical properties and impact on air quality through the ground-based and satellite measurements over Nanjing, China. Atmos Environ 115:304–316

    Article  CAS  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A et al (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, pp. 1535

  • Jacobson MZ (2001) Strong radiative heating due to mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    Article  CAS  Google Scholar 

  • Kaskaoutis DG, Badarinath KVS, Kharol SK, Sharma AR, Kambezidis HD (2009) Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J Geophys Res 114:D22204. http://dx.doi.org/10.1029/2009JD012423

  • Kaskaoutis DG, Sinha PR, Vinoj V, Kosmopoulos PG, Tripathi SN, Misra A, Sharma M, Singh RP (2013) Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions. Atmos Environ 79:7–19

    Article  CAS  Google Scholar 

  • Kedia S, Ramachandran S, Holben BN, Tripathi SN (2014) Quantification of aerosol type, and source of aerosols over the Indo-Gangetic plain. Atmos Environ 98:607–619

    Article  CAS  Google Scholar 

  • Kim S-W, Choi I–J, Yoon S-C (2010) A multiyear analysis of clear-sky aerosol optical properties and direct radiative forcing at Gosan, Korea (2001–2008). Atmos Res 95:279–287

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR, Adesina AJ (2013) Inferring wavelength dependence of AOD and Angstrom exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect. Sci Total Environ 461–462:397–408

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Reddy RR, Gopal KR, Adesina AJ (2014) Identification and classification of different aerosol types over a subtropical rural site in Mpumalanga, South Africa: Seasonal variations as retrieved from the AERONET Sunphotometer. Aerosol Air Qual Res 14:108–123

  • Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Adesina AJ, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR, and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos Environ 117:9–18

    Article  CAS  Google Scholar 

  • Li S, Wang TJ, Xie M, Han Y, Zhuang BL (2015) Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China. Atmos Environ 123:350–356

    Article  CAS  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation. Elsevier, New York, p 583

    Google Scholar 

  • Liu J, Zheng Y, Li Z, et al (2012) Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J Geophys Res 117:D00K38. http://dx.doi.org/10.1029/2011JD016490

  • Pace G, di Sarra A, Meloni D, Piacentino S, Chamard P (2006) Aerosol optical properties at Lampedusa (central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos Chem Phys 6:697–713

    Article  CAS  Google Scholar 

  • Pan L, Che H, Geng F et al (2010) Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos Environ 44:2587–2596

    Article  CAS  Google Scholar 

  • Pathak B, Subba T, Dahutia P, Bhuyan PK, Moorthy KK, Gogoi MM, Babu SS, et al (2015) Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements. Atmos Environ. doi:10.1016/j.atmosenv.2015.07.038

  • Ramachandran S, Kedia S (2012) Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs rural) and seasonal variations. Environ Sci Pollut Res 19:2159–2171

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  CAS  Google Scholar 

  • Remer LA, Kaufman YJ, Tanre D, Matto S, Chu DA, Martins JV et al (2005) The MODIS aerosol algorithm products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79:2101–2114

    Article  Google Scholar 

  • Romero AS, Gonzalez JA, Calbo J, Lorenzo AS, Michalsky J (2016) Aerosol optical depth in a western Mediterranean site: an assessment of different methods. Atmos Res 174–175:70–84

    Article  Google Scholar 

  • Russell PB, Bergstorm RW, Shinozuka Y, Clarke AD, DeCarlo PF, Jimenez JL, Livingston JM, Redemann J et al (2010) Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169

    Article  CAS  Google Scholar 

  • Saha A, Mallet M, Roger JC, Dubuisson P, Piazzola J, Despiau S (2008) One year measurements of aerosol optical properties over an urban coastal site: effect on local direct radiative forcing. Atmos Res 90:195–202

    Article  Google Scholar 

  • Satheesh SK, Vinoj V, Moorthy KK (2010) Radiative effects of aerosols at an urban location in southern India: observations versus model. Atmos Environ 44:5295–5304

    Article  CAS  Google Scholar 

  • Schuster GL, Dubovik O, Holben BN (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res 111. http://dx.doi.org/10.1029/2005JD006328

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben BN (2004) Variability of aerosol parameters over Kanpur city, northern India. J Geophys Res. doi:10.1029/2004JD004966

  • Sinha PR, Dumka UC, Manchanda RK, Kaskoutis DG, Sreenivasan S, Moorthy KK, Babu SS (2013) Contrasting aerosol characteristics and radiative forcing over Hyderabad, India due to seasonal meso-scale and synoptic scale processes. Quat J Royal Meteorol Soc 139:434–450

    Article  Google Scholar 

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud screening and quality control algorithms for the AERONET data base. Remote Sens Environ 73:337–349

    Article  Google Scholar 

  • Srivastava AK, Ram K, Singh S, Kumar S, Tiwari S (2015) Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols. Sci Total Environ 502:287–295

    Article  CAS  Google Scholar 

  • Takemura T, Nakajima T (2004) Overview of SKYNET and its activities. Optica Pura y Aplcada 37:3303–3308

    Google Scholar 

  • Tanre D, Kaufman YJ, Holben BN, Chatenet B, Karineli A, Lavenu F, Blarel L, Dubovik O, Remer L (2001) Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. J Geophys Res 106:205–218

    Article  Google Scholar 

  • Tiwari S, Srivastava AK, Singh AK, Singh S (2015) Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing. Environ Sci Pollut Res. doi:10.1007/s11356-015-4495-6

  • Twomey SA, Piepgrass M, Wolfe TL (1984) An assessment of the impact of pollution on the global albedo. Tellus 36B:356–366

    Article  CAS  Google Scholar 

  • Valenzuela A, Olmo EJ, Lyamani H, Anton M, Quirantes A, Alados-Arboledas L (2012) Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos Chem Phys 12:10331–10351

    Article  CAS  Google Scholar 

  • Wang P, Che H, Zhang X et al (2010) Aerosol optical properties of regional background atmosphere in northeast China. Atmos Environ 44:4404–4412

    Article  CAS  Google Scholar 

  • Wang L, Gong W, Xia X, Zhu J, Li J, Zhu Z (2015) Long-term observations of aerosol optical properties at Wuhan, an urban site in central China. Atmos Environ 101:94–102

    Article  CAS  Google Scholar 

  • Wu Y, Zhu J, Che H, Xia X, Zhang R (2015) Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in northeast China. Atmos Res 157:56–65

    Article  CAS  Google Scholar 

  • Xia X, Chen H, Wang P, Zhang W, Goloub P, Chatenet B, Eck TF, Holben BN (2006) Variation of column-integrated aerosol properties in a Chinese urban region. J Geophys Res 111:D05204. http://dx.doi.org/10.1029/2005JD006203

  • Xia X, Chen H, Goloub P, Zong X, Zhang W, Wang P (2013) Climatological aspects of aerosol optical properties in North China Plain based on ground and satellite remote-sensing data. J Quant Spectro Radiat Transf 127:12–23

    Article  CAS  Google Scholar 

  • Xia X, Che H, Zhu J, Chen H, Cong Z, Deng X et al (2016) Ground-based remote sensing of aerosol climatology in China: aerosol optical properties, direct radiative effects and its parameterization. Atmos Environ 124:243–251

    Article  CAS  Google Scholar 

  • Yu X, Ma J, Kumar KR, Zhu B, An J, He J, Li M (2016a) Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Sci Total Environ 546:277–291

  • Yu X, Kumar KR, Lu R, Ma J (2016b) Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing. Environ Pollut 210:217–226

  • Yu X, Lu R, Kumar KR, Ma J, et al (2016c) Dust aerosol properties and radiative forcing observed in spring during 2001–2014 over urban Beijing, China. Environ Sci Pollut Res. doi:10.1007/s11356-016-6727-9

  • Zhu J, Xia X, Che H, Wang J, Zhang J, Duan Y (2016) Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmos Res 169:237–247

    Article  CAS  Google Scholar 

  • Zhuang BL, Wang TJ, Li S, Liu J, Talbot R, Mao HT, Yang XQ et al (2014) Optical properties and radiative forcing of urban aerosols in Nanjing, China. Atmos Environ 83:43–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140996); the Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, NUIST (Grant No. KDW1404); the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB05030104); the National Natural Science Foundation of China (Grant Nos. 41475142, 91544229); and the Qing Lan Project. Concerning the AERONET data used in this paper, we thank Prof. Bin Zhu, PI of NUIST site for his efforts in establishing and maintaining the site. Thanks are also due to Dr. Jing Wang for the upkeep of the instrument and availability of the online data. We also thank the MODIS and CALIPSO scientific teams and also the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model used in this study. The authors would like to acknowledge Prof. Gerhard Lammel, the Editor-in-Chief of the journal, and the two anonymous reviewers for their helpful comments and constructive suggestions toward the improvement of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Raghavendra Kumar.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, N., Kumar, K.R., Yu, X. et al. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China. Environ Sci Pollut Res 23, 17532–17552 (2016). https://doi.org/10.1007/s11356-016-6953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6953-1

Keywords

Navigation