Skip to main content
Log in

Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 11 April 2016

Abstract

Metal contamination represents a strong selective pressure favoring tolerant genotypes and leading to differentiation between plant populations. We investigated the adaptive capacity of early-colonizer species of Verbascum recently exposed to Zn- and Cu-contaminated soils (10–20 years). Two Verbascum thapsus L. populations from uncontaminated sites (NMET1, NMET2), one V. thapsus from a zinc-contaminated site (MET1), and a Verbascum lychnitis population from an open-cast copper mine (MET2) were exposed to elevated Zn or Cu in hydroponic culture under glasshouse conditions. MET populations showed considerably higher tolerance to both Zn and Cu than NMET populations as assessed by measurements of growth and net photosynthesis, yet they accumulated higher tissue Zn concentrations in the shoot. Abscisic acid (ABA) concentration increased with Zn and Cu treatment in the NMET populations, which was correlated to stomatal closure, decrease of net photosynthesis, and nutritional imbalance, indicative of interference with xylem loading and divalent-cation homeostasis. At the cellular level, the sensitivity of NMET2 to Zn and Cu was reflected in significant metal-induced ROS accumulation and ion leakage from roots as well as strong induction of peroxidase activity (POD, EC 1.11.1.7), while Zn had no significant effect on ABA concentration and POD activity in MET1. Interestingly, MET2 had constitutively higher root ABA concentration and POD activity. We propose that ABA distribution between shoots and roots could represent an adaptive mechanism for maintaining low ABA levels and unaffected stomatal conductance. The results show that metal tolerance can occur in Verbascum populations after relatively short time of exposure to metal-contaminated soil, indicating their potential use for phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad KM, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 1–15

  • Al-Hiyaly SA, McNeilly T, Bradshaw AD (1988) The effects of zinc contamination from electricity pylons-evolution in a replicated situation. New Phytol 110:571–580

    Article  CAS  Google Scholar 

  • Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2014) Lipids and proteins–major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121

    Article  Google Scholar 

  • Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I (2015) Too much is bad–an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382

    Article  CAS  Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2014) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22:3441–3450

    Article  Google Scholar 

  • Asch F (2000) Laboratory manual on determination of abscisic acid by indirect enzyme linked immuno sorbent assay (ELISA). The Royal Veterinary and Agricultural University. Department of Agricultural Sciences, Denmark

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders–strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Bazihizina N, Colzi I, Giorni E, Mancuso S, Gonnelli C (2015) Photosynthesizing on metal excess: copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations. Plant Sci 232:67–76

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  Google Scholar 

  • Bert V, Macnair MR, De Laguerie P, Samumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    Article  CAS  Google Scholar 

  • Bijlsma R, Loeschcke V (eds) (1997) Environmental stress, adaptation and evolution. Birkhäuser Verlag, Basel

    Google Scholar 

  • Bohn U, Gollub G, Hettwer C (eds) (2000) Map of the natural vegetation of Europe. Part 3 Maps (General Map 1:10 million). Landwirtschaftsverlag, Münster

    Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  Google Scholar 

  • Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98

    Article  CAS  Google Scholar 

  • Colzi I, Rocchi S, Rangoni M, Del Bubba M, Gonnelli C (2014) Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L. Environ Sci Pollut Res 21:10960–10969

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2001) The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Bioch 39:657–664

    Article  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris. Copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  • DalCorso G, Fasani E, Furini A (2013) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Danilović G, Morina F, Satovic Z, Lj P, Panković D (2015) Genetic variability of Verbascum populations from metal polluted and unpolluted sites. Genetika 47:245–251

    Article  Google Scholar 

  • Deram A, Denayer FO, Dubourgier HC, Douay F, Petit D, Van Haluwyn C (2007) Zinc and cadmium accumulation among and within populations of the pseudometalophytic species Arrhenatherum elatius: implications for phytoextraction. Sci Total Environ 372:372–381

    Article  CAS  Google Scholar 

  • Disante KB, Cortina J, Vilagrosa A, Fuentes D, Hernández EI, Ljung K (2014) Alleviation of Zn toxicity by low water availability. Physiol Plant 150:412–424

    Article  CAS  Google Scholar 

  • Ebbs S, Uchil S (2008) Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica 46:49–55

    Article  CAS  Google Scholar 

  • El Hafid R, Smith DH, Karrou M, Samir K (1998) Physiological responses of spring durum wheat cultivars to early-season drought in a mediterranean environment. Ann Bot 81:363–370

    Article  Google Scholar 

  • Ernst WHO, Nelissen HJM, Bookum WMT (2000) Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic soils. Environ Exp Bot 43:55–71

    Article  CAS  Google Scholar 

  • Fahr M, Laplaze L, El Mzibri M, Doumas P, Bendaou N, Hocher V, Didier B, Smouni A (2015) Assessment of lead tolerance and accumulation in metallicolous and non-metallicolous populations of Hirschfeldia incana. Environ Exp Bot 109:186–192

    Article  CAS  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, Attila Ö, Kolbert Z (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189

    Article  CAS  Google Scholar 

  • Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Francisco JC, László E, Kolbert Z (2014) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625

    Article  Google Scholar 

  • Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  • Gross KL (1980) Colonization by Verbascum thapsus (mullein) of an old-field in Michigan: experiments on the effects of vegetation. J Ecol 68:919–927

    Article  Google Scholar 

  • Gross KL (1984) Effects of seed size and growth form on seedling establishment of six monocarpic perennial plants. J Ecol 72:369–387

    Article  Google Scholar 

  • Gross KL, Werner PA (1978) The biology of Canadian weeds: Verbascum thapsus and V. blatteria. Can J Plant Sci 58:401–413

    Article  Google Scholar 

  • Halimaa P, Lin YF, Ahonen VH, Blande D, Clemens S, Gyenesei A, Häikiö E, Tervahauta AI (2014) Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Halimaa P, Plessl M, Peräniemi S, Schat H, Aarts MGM, Servomaa K, Kärenlampi SO (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225:977–989

    Article  CAS  Google Scholar 

  • Hensley K, Williamson KS, Floyd RA (2003) Fluorogenic analysis of H2O2 in biological materials. In: Hensley K, Floyd RA (eds) Methods in biological oxidative stress. Humana Press, NJ

    Chapter  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  Google Scholar 

  • Ilić R, Cerović O, Gajić MR (1972) Flora Košutnjaka. Belgrade, Serbia

  • Jain SK, Bradshaw AD (1966) Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21:407–441

    Article  Google Scholar 

  • Jovanović L, Morina F, Kukavica B, Veljović-Jovanović S (2007) High antioxidative capacity of Verbascum thapsus L. from a metal-contaminated area is induced upon treatment with Zn. In: Zhu Y, Lepp N, Naidu R (eds) Biogeochemistry of Trace Elements in the Environment: Environmental Protection, Remediation, and Human Health. Proceedings of the Ninth ICOBTE. Tsinghua University Press, Beijing, pp 184–185

    Google Scholar 

  • Ke W, Xiong ZT, Chen S, Chen J (2007) Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot 59:59–67

    Article  CAS  Google Scholar 

  • Kudoyarova G, Veselova S, Hartung W, Farhutdinov R, Veselov D, Sharipova G (2011) Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta 233:87–94

    Article  CAS  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  Google Scholar 

  • Liu J, Xiong Z, Li T, Huang H (2004) Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites. Environ Exp Bot 52:43–51

    Article  CAS  Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Article  CAS  Google Scholar 

  • Mahieu S, Soussou S, Cleyet‐Marel JC, Brunel B, Mauré L, Lefèbvre C, Escarré J (2013) Local adaptation of metallicolous and non‐metallicolous Anthyllis vulneraria populations: their utilization in soil restoration. Restor Ecol 5:551–559

    Article  Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Masarovič D, Slováková Ľ, Bokor B, Bujdoš M, Lux A (2012) Effect of silicon application on Sorghum bicolor exposed to toxic concentration of zinc. Biologia 67:706–712

    Google Scholar 

  • Meyer CL, Kostecka AA, Saumitou‐Laprade P, Créach A, Castric V, Pauwels M, Frérot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142

    Article  CAS  Google Scholar 

  • Meyer CL, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure MP, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot. doi:10.1093/jxb/erv144

    Google Scholar 

  • Mika A, Boenisch MJ, Hopff D, Lüthje S (2010) Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. J Exp Bot 61:831–841

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Morina F, Lj J, Mojović M, Vidović M, Panković D, Veljović-Jovanović S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224

    CAS  Google Scholar 

  • Nadgórska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res 20:1124–1134

    Article  Google Scholar 

  • Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLOS J. e41143.

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  Google Scholar 

  • Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72

    Article  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  Google Scholar 

  • Pawlowska TE, Błaszkowski J, Rühling Å (1997) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Peck PC (2004) Reducing environment and security risks from mining in South Eastern Europe: Desk assessment study for the Environment and Security Initiative Project (Draft web available desk-assessment: http://www.envsec.org/see/index.php.). UNEP Regional Office for Europe and UNEP Division of Technology, Industry and Economics, Geneva

    Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:256–263

    Article  CAS  Google Scholar 

  • Plessl M, Rigola D, Hassinen VH, Tervahauta A, Kärenlampi S, Schat H, Artts MGM, Ernst D (2010) Comparison of two ecotypes of the metal hyperaccumulator Thlaspi caerulescens at the transcriptional level. Protoplasma 239:81–93

    Article  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Regional Environmental Center for Central and Eastern Europe –REC (2003) Developing a priority environmental investment programme for South Eastern Europe, Annex 3: Full list of hotspots, www.rec.org.

  • Reinartz JA (1984) Life history variation of common mullein (Verbascum thapsus). I. Latitudinal differences in population dynamics and timing of reproduction. J Ecol 72:897–912

    Article  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP (2015) Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications. Plant Sci 236:1–17

    Article  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximénez-Embún P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Duschenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. Lewis Publishers, Boca Raton

    Google Scholar 

  • Shah TM, Kifayattullah Q, Arfan M (2004) Pedo and biogeochemical study of zinc-lead deposits of the Besham area, northern Pakistan: its implication in mineral exploration and environmental degradation. Environ Geol 45:544–549

    Article  Google Scholar 

  • Sharma S, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38:207–223

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman and Co., New York

    Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zn-dependent global transcriptional control, transcriptional de-regulation and higher gene copy number genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sc 171:286–294

    Article  CAS  Google Scholar 

  • Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    Article  CAS  Google Scholar 

  • Tsednee M, Yang SC, Lee DC, Yeh KC (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166:839–852

    Article  Google Scholar 

  • Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes–new solution for waste revegetation. Plant Soil 305:267–280

    Article  CAS  Google Scholar 

  • Turnau K, Ostachowicz B, Wojtczak G, Anielska T, Sobczyk Ł (2010) Metal uptake by xerothermic plants introduced into Zn-Pb industrial wastes. Plant Soil 337:299–311

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  Google Scholar 

  • United Nations Institute for Training and Research- UNITAR (2008) National profile for management, Serbia. www.unitar.org

  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koorneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thalspi caerulescens. Plant Physiol 142:1127–1147

    Article  Google Scholar 

  • van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • van der Meijden E, Wijn M, Verkaar HJ (1988) Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51:355–363

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Vuletić M, Šukalović V, Marković K, Kravić N, Vučinić Ž, Maksimović V (2014) Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress. Plant Biol 16:88–96

    Article  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–18

    Article  CAS  Google Scholar 

  • Weiler EW (1982) An enzyme-immunoassay for cis-(+)-abscisic acid. Physiol Plant 54:510–514

    Article  CAS  Google Scholar 

  • Wężowicz K, Rozpądek P, Turnau K (2014) The diversity of endophytic fungi in Verbascum lychnitis from industrial areas. Symbiosis 64:139–147

    Article  Google Scholar 

  • Wolkersdorfer C, Bowell R (2005) Contemporary reviews of mine water studies in Europe, Part 3. Mine Water Environ 24:58–76

    Article  Google Scholar 

  • Wu L, Antonovics J (1976) Experimental ecological genetics in Plantago. II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from a roadside. Ecology 57:205–208

    Article  CAS  Google Scholar 

  • Yang Y, Sun C, Yao Y, Zhang Y, Achal V (2011) Growth and physiological responses of grape (Vitis vinifera “Combier”) to excess zinc. Acta Physiol Plant 33:1483–1491

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by III43010 project funded by the Ministry of Education, Science and Technological Development, Republic of Serbia and OSI/FCO scholarship to F.M. The authors would like to gratefully thank Prof. Andrew Smith (Department of Plant Sciences, University of Oxford) for valuable suggestions and comments. Also, the authors would like to thank Dr. Mark Fricker for assistance with MATLAB, Dr. Markus Schwarzländer for help with microscopy, and Prof. John Pannell for loan of the LCA-4 portable gas analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filis Morina.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. A1

Calcium concentration in (a,c) shoots and (b,d) roots of Zn and Cu treated Verbascum plants after 5 weeks of treatment. Values are means ± SD for 6 plants, expressed on a tissue dry biomass basis. Asterisks denote values significantly different from the respective controls in the 0 μM Zn or Cu treatments (* p < 0.05, ** p < 0.01). (PPTX 248 kb)

Fig. A2

Manganese concentration in (a,c) shoots and (b,d) roots of Zn and Cu treated Verbascum plants after 5 weeks of treatment. Values are means ± SD for 6 plants, expressed on a tissue dry biomass basis. Asterisks denote values significantly different from the respective controls in the 0 μM Zn or Cu treatments (* p < 0.05, ** p < 0.01). (PPTX 236 kb)

Fig. A3

Potassium concentration in (a,c) shoots and (b,d) roots of Zn and Cu treated Verbascum plants after 5 weeks of treatment. Values are means ± SD for 6 plants, expressed on a tissue dry biomass basis. Asterisks denote values significantly different from the respective controls in the 0 μM Zn or Cu treatments (* p < 0.05). (PPTX 243 kb)

Fig. A4

Magnesium concentration in (a,c) shoots and (b,d) roots of Zn and Cu treated Verbascum plants after 5 weeks of treatment. Values are means ± SD for 6 plants, expressed on a tissue dry biomass basis. (PPTX 248 kb)

Fig. A5

Detection of peroxidase (POD) isoforms by isoelectrofocusing in the roots of NMET1, NMET2, MET1 and MET2 control plants and after 3 weeks of treatment with either 60 μM Zn or 20 μM Cu. The same amount of protein (10 μg) was loaded in each lane. (PPT 284 kb)

Fig. A6

Comparison of Zn and Cu effects on growth increment of shoot and roots of two Verbascum lychnitis populations over 5 weeks of treatment. Values are means ± SD for 8 plants. V. lychnitis NMET – non-metalliferous population, V. lychnitis MET- metalliferous population (MET2 as described in the paper). (PPTX 204 kb)

Table A1

The results of two-way ANOVA with Bonferroni correction showing effects of metal treatment, populations, and their interaction on shoot and root growth increment (DW, g), Zn and Cu concentration in the shoots and roots (mg kg−1) and Fe concentration in the shoots and roots (mg kg−1) in Zn and Cu treatments for V. thapsus populations (NMET1, NMET2 and MET1); ns- non-significant. (DOCX 19 kb)

Table A2

The results of two-way ANOVA after Bonferroni correction showing effects of metal treatment, populations, and their interaction on net photosynthesis (A, μmol m−2 s−1), transpiration (E, mmol m−2 s−1), stomatal conductance (g s , mmol m−2 s−1) and intracellular CO2 concentration (C i , μmol mol−1 CO2) for V. thapsus populations (NMET1, NMET2 and MET1); ns- non-significant. (DOCX 18 kb)

Table A3

The results of two-way ANOVA with Bonferroni correction showing effects of metal treatment, populations, and their interaction on shoot and root growth increment (DW, g), Zn and Cu concentration in the shoots and roots (mg kg−1) and Fe concentration in the shoots and roots (mg kg−1) in Zn and Cu treatments for two metalliferous populations, V. thapsus (MET1) and V. lychnitis (MET2); ns- non-significant. (DOCX 17 kb)

Table A4

The results of two-way ANOVA after Bonferroni correction showing effects of metal treatment, populations, and their interaction on net photosynthesis (A, μmol m−2 s−1), transpiration (E, mmol m−2 s−1), stomatal conductance (g s , mmol m−2 s−1) and intracellular CO2 concentration (C i , μmol mol−1 CO2) for two metalliferous populations, V. thapsus (MET1) and V. lychnitis (MET2); ns- non-significant. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morina, F., Jovanović, L., Prokić, L. et al. Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. Environ Sci Pollut Res 23, 10005–10020 (2016). https://doi.org/10.1007/s11356-016-6177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6177-4

Key words

Navigation