Skip to main content
Log in

Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Various mineral processing operations to produce pure metals from mineral ores generate sludges, residues, and other unwanted by-products/wastes. As a general practice, these wastes are either stored in a reservoir or disposed in the surrounding of mining/smelting areas, which might cause adverse environmental impacts. Therefore, it is important to understand the various characteristics like heavy metal leaching features and potential toxicity of these metallurgical wastes. In this study, zinc plant leach residues (ZLRs) were collected from a currently operating Zn metallurgical industry located in Minas Gerais (Brazil) and investigated for their potential toxicity, fractionation, and leachability. Three different ZLR samples (ZLR1, ZLR2, and ZLR3) were collected, based on their age of production and deposition. They mainly consisted of Fe (6–11.5 %), Zn (2.5 to 5.0 %), and Pb (1.5 to 2.5 %) and minor concentrations of Al, Cd, Cu, and Mn, depending on the sample age. Toxicity Characteristic Leaching Procedure (TCLP) results revealed that these wastes are hazardous for the environment. Accelerated Community Bureau of Reference (BCR) sequential extraction clearly showed that potentially toxic heavy metals such as Cd, Cu, Pb, and Zn can be released into the environment in high quantities under mild acidic conditions. The results of the liquid-solid partitioning as a function of pH showed that pH plays an important role in the leachability of metals from these residues. At low pH (pH 2.5), high concentrations of metals can be leached: 67, 25, and 7 % of Zn can be leached from leach residues ZLR1, ZLR2, and ZLR3, respectively. The release of metals decreased with increasing pH. Geochemical modeling of the pH-dependent leaching was also performed to determine which geochemical process controls the leachability/solubility of the heavy metals. This study showed that the studied ZLRs contain significant concentrations of non-residual extractable fractions of Zn and can be seen as a potential secondary resource for Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABNT (Associacão Brasileira de Normas Técnicas), Resíduos Sólidos- Classificac¸ ão, NBR 10004, Rio de Janeiro, RJ, Brasil (2004). http://www.aslaa.com.br/legislacoes/NBR%20n%(2010)004-(2004).pdf (ABNT, N. ((2004)). 10004: (2004). Resíduos sólidos. Classificação.) (in portuguese)

  • Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci Total Environ 364(1):14–23. doi:10.1016/j.scitotenv.(2005).10.021

    Article  CAS  Google Scholar 

  • Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2007) Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere 66:775–782. doi:10.1016/j.chemosphere.(2006).07.045

    Article  CAS  Google Scholar 

  • Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2008) Leaching behavior of mineral processing waste: comparison of batch and column investigations. J Hazard Mater 153(3):1088–1092. doi:10.1016/j.jhazmat.(2007).09.063

    Article  CAS  Google Scholar 

  • Al-Jabri KS, Taha RA, Al-Hashmi A, Al-Harthy AS (2006) Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete. Constr Build Mater 20(5):322–331. doi:10.1016/j.conbuildmat.2005.01.020

    Article  Google Scholar 

  • Altundogan HS, Erdem M, Orhan R, Ozer A, Turnen F (1998) Heavy metal pollution potential of zinc leach residues discarded in Çinkur plant. Turk J Eng Environ Sci 22:167–177

    CAS  Google Scholar 

  • Astrup T, Mosbæk H, Christensen TH (2006) Assessment of long-term leaching from waste incineration air-pollution-control residues. Waste Manag 26(8):803–814. doi:10.1016/j.wasman.(2005).12.008

    Article  CAS  Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133(1):25–46. doi:10.1039/B711896A

    Article  CAS  Google Scholar 

  • Bataillard P, Cambier P, Picot C (2003) Short‐term transformations of lead and cadmium compounds in soil after contamination. Eur J Soil Sci 542:365–376. doi:10.1046/j.1365-2389.(2003).00527.x

    Article  Google Scholar 

  • Cappuyns V, Swennen R (2008) “Acid extractable” metal concentrations in solid matrices: a comparison and evaluation of operationally defined extraction procedures and leaching tests. Talanta 75(5):1338–1347. doi:10.1016/j.talanta.2008.01.047

    Article  CAS  Google Scholar 

  • Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65(2):491–499. doi:10.2136/sssaj(2001).652491x

    Article  CAS  Google Scholar 

  • Clevenger TE (1990) Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Pollut 50(3-4):241–254. doi:10.1007/BF00280626

    Article  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 143:454–458. doi:10.4319/lo.1969.14.3.0454

    Article  Google Scholar 

  • Çoruh S, Ergun ON (2010) Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J Hazard Mater 173(1):468–473. doi:10.1016/j.jhazmat.2009.08.108

    Article  Google Scholar 

  • Creedy S, Glinin A, Matusewicz R, Hughes S, Reuter M (2013) Ausmelt technology for treating zinc residues. World Metall-ERZMETALL 66:230–235

    CAS  Google Scholar 

  • Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118(3):419–426. doi:10.1016/S0269-7491(01)00285-8

    Article  CAS  Google Scholar 

  • Dijkstra JJ, van der Sloot HA, Comans RN (2006) The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl Geochem 21(2):335–351. doi:10.1016/j.apgeochem.(2005).11.003

    Article  CAS  Google Scholar 

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80(1):55–68. doi:10.1016/S0375-6742(03)00182-1

    Article  CAS  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4(6):823–857. doi:10.1039/B207574C

    Article  CAS  Google Scholar 

  • Greeberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. Am Public Health Assoc 21:4–134

  • Guo ZH, Pan FK, Xiao XY, Zhang L, Jiang KQ (2010) Optimization of brine leaching of metals from hydrometallurgical residue. Trans Nonferrous Metal Soc China 20(10):2000–2005. doi:10.1016/S1003-6326(09)60408-8

    Article  CAS  Google Scholar 

  • Gustafsson JP (2012) Visual Minteq, a free equilibrium speciation model. KTH, Department of Land and Water Resources Engineering

  • Hollagh ARE, Alamdari EK, Moradkhani D, Salardini AA (2013) Kinetic analysis of isothermal leaching of zinc from zinc plant residue. Int J Nonferrous Metall 2:10–20. doi:10.4236/ijnm.(2013).21002

    Article  Google Scholar 

  • Ipolyi I, Brunori C, Cremisini C, Fodor P, Macaluso L, Morabito R (2002) Evaluation of performance of time-saving extraction devices in the BCR three-step sequential extraction procedure. J Environ Monit 4(4):541–548. doi:10.1039/b202018c

    Article  CAS  Google Scholar 

  • Jang YC, Townsend TG (2003) Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environ Sci Technol 37(20):4778–4784. doi:10.1021/es034155t

    Article  CAS  Google Scholar 

  • Jha MK, Kumar V, Singh RJ (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33:1–22. doi:10.1016/S0921-3449(00)00095-1

    Article  Google Scholar 

  • Johnson DB (2009) Extremophiles: acid environments. Encyclopedia of Microbiology. In Schaechter M (ed). Elsevier, p 107–126

  • Kachur AN, Arzhanova VS, Yelpatyevsky PV, von Braun MC, von Lindern IH (2003) Environmental conditions in the Rudnaya River watershed—a compilation of Soviet and post-Soviet era sampling around a lead smelter in the Russian Far East. Sci Total Environ 303:171–185. doi:10.1016/S0048-9697(02)00351-0

    Article  CAS  Google Scholar 

  • Ke Y, Chai LY, Min XB, Tang CJ, Chen J, Wang Y, Liang YJ (2014) Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Miner Eng 61:105–112. doi:10.1016/j.mineng.(2014).03.022

    Article  Google Scholar 

  • Li M, Peng B, Chai LY, Peng N, Xie XD, Yan H (2013) Technological mineralogy and environmental activity of zinc leaching residue from zinc hydrometallurgical process. Trans Nonferrous Metal Soc China 235:1480–1488. doi:10.1016/S1003-6326(13)62620-5

    Article  Google Scholar 

  • Lottermoser B (2010) Mine wastes. Springer, Berlin

    Book  Google Scholar 

  • Marguí E, Salvadó V, Queralt I, Hidalgo M (2004) Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal Chim Acta 524(1):151–159. doi:10.1016/j.aca.(2004).05.043

    Article  Google Scholar 

  • Min XB, Xie XD, Chai LY, Liang YJ, Li M, Ke Y (2013) Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans Nonferrous Metal Soc China 23(1):208–218. doi:10.1016/S1003-6326(13)62448-6

    Article  CAS  Google Scholar 

  • Ministry of mines and energy (mme), Brazil (2010) (http://www.mme.gov.br/portalmme/opencms/sgm/galerias/arquivos/plano_duo_decenal/a_mineracao_brasileira/P16_RT25_Perfil_do_Minxrio_de_Zinco.pdf) (in Portuguese)

  • Moradkhani D, Eskandari S, Sedaghat B, Najafabadi MR (2013) A study on heavy metals mobility from zinc plant residues in Iran. Physicochem Probl Miner Process 49:567–574. doi:10.5277/ppmp130217

    CAS  Google Scholar 

  • Ngenda RB, Segers L, Kongolo PK (2009) Base metals recovery from zinc hydrometallurgical plant residues by digestion method. Hydrometallurgy Conference, The Southern African Institute of Mining and Metallurgy, 17–29

  • Pansu M, Gautheyrou J (2007) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, ISBN-10 3-540-31210-2

    Google Scholar 

  • Pérez-Cid B, Lavilla I, Bendicho C (1998) Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound. Anal Chim Acta 360(1):35–41. doi:10.1016/S0003-2670(97)00718-6

    Article  Google Scholar 

  • Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanette ML, Orio AA (1985) Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Met Environ 2:454–456

    CAS  Google Scholar 

  • Quevauviller P, Rauret G, Griepink B (1993) Single and sequential extraction in sediments and soils. Int J Environ Anal Chem 51(1-4):231–235. doi:10.1080/03067319308027629

    Article  Google Scholar 

  • Quina MJ, Bordado JC, Quinta-Ferreira RM (2009) The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Manag 29(9):2483–2493. doi:10.1016/j.wasman.2009.05.012

    Article  CAS  Google Scholar 

  • Safarzadeh MS, Moradkhani D, Ojaghi-Ilkhchi M (2009) Kinetics of sulfuric acid leaching of cadmium from Cd–Ni zinc plant residues. J Hazard Mater 163(2):880–890. doi:10.1016/j.jhazmat.(2008).07.082

    Article  CAS  Google Scholar 

  • Sánchez-España J, López-Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7):1320–1356. doi:10.1016/j.apgeochem.(2005).01.011

    Article  Google Scholar 

  • Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol 312:1427. doi:10.1016/j.jhydrol.(2005).01.021

    Article  Google Scholar 

  • Souza ADD (2000) Integration process of the treatments of concentrates or zinc silicates ore and roasted concentrate of zinc sulphides

  • Souza ADD, Pina PDS, Lima EVDO, Da Silva CA, Leão VA (2007) Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 89(3):337–345. doi:10.1016/j.hydromet.(2007).08.005

    Article  CAS  Google Scholar 

  • Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. J Hazard Mater 186:1837–1846. doi:10.1016/j.jhazmat.(2010).12.081

    Article  CAS  Google Scholar 

  • Turan MD, Altundoğan HS, Tümen F (2004) Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 75(1):169–176. doi:10.1016/j.hydromet.2004.07.008

    Article  CAS  Google Scholar 

  • U.S. Geological Survey (2014) Mineral commodity summaries: U.S. Geological Survey, 196 p. (ISBN 978–1–4113–3765–7)

  • United States Environmental Protection Agency (1992) Toxicity Characteristic Leaching Procedure (TCLP), test method 1311-TCLP, Washington, DC

  • United States Environmental Protection Agency (2001) Total, fixed, and volatile solids in water, solids, and biosolids. Washington, DC, p 1–13

  • United States Environmental Protection Agency (2012) Liquid-solid partitioning as a function of extract ph using a parallel batch extraction procedure, test method 1313, Washington, DC

  • Van Herck P, Van der Bruggen B, Vogels G, Vandecasteele C (2000) Application of computer modelling to predict the leaching behavior of heavy metals from MSWI fly ash and comparison with a sequential extraction method. Waste Manag 20(2):203–210. doi:10.1016/S0956-053X(99)00321-9

    Article  Google Scholar 

  • Van Herreweghe S, Swennen R, Cappuyns V, Vandecasteele C (2002) Chemical associations of heavy metals and metalloids in contaminated soils near former ore treatment plants: a differentiated approach with emphasis on pH stat leaching. J Geochem Explor 76(2):113–138. doi:10.1016/S0375-6742(02)00232-7

    Article  Google Scholar 

  • Visvanthan C, Yin NH, Karthikeyan OP (2010) Co-disposal of electronic waste with municipal solid waste in bioreactor landfills. Waste Manag 30(12):2608–2614. doi:10.1016/j.wasman.2010.08.006

    Article  CAS  Google Scholar 

  • Vítková M, Ettler V, Šebek O, Mihaljevič M, Grygar T, Rohovec J (2009) The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash. J Hazard Mater 167(1):427–433. doi:10.1016/j.jhazmat.(2008).12.136

    Article  Google Scholar 

  • Vítková M, Ettler V, Hyks J, Astrup T, Kříbek B (2011) Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Appl Geochem 26:S263–S266. doi:10.1016/j.apgeochem.(2011).03.120

    Article  Google Scholar 

  • Vítková M, Hyks J, Ettler V, Astrup T (2013) Stability and leaching of cobalt smelter fly ash. Appl Geochem 29:117–125. doi:10.1016/j.apgeochem.(2012).11.003

    Article  Google Scholar 

  • Zárate-Gutiérrez R, Lapidus GT (2014) Anglesite (PbSO4) leaching in citrate solutions. Hydrometallurgy 144:124–128. doi:10.1016/j.hydromet.(2014).02.003

    Article  Google Scholar 

  • Zhang Y, Jiang J, Chen M (2008) MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. J Environ Sci 20(11):1398–1402. doi:10.1016/S1001-0742(08)62239-1

    Article  CAS  Google Scholar 

  • Zhou Y, Ning XA, Liao X, Lin M, Liu J, Wang J (2013) Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicol Environ Saf 95:130–136. doi:10.1016/j.ecoenv.(2013).05.026

    Article  CAS  Google Scholar 

  • Zhu H, Yuan Z, Zeng G, Jinag M, Liang J, Zhang C, Yin J, Huang H, Liu Z, Jiang H (2012) Ecological risk assessment of heavy metals in sediment of Xiawan Port based on modified potential ecological risk index. Trans Nonferrous Metal Soc China 22:1470–1477. doi:10.1016/S1003-6326(11)61343-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support provided by the academic research programs Erasmus Mundus Joint Doctorate (EMJD) in Environmental Technologies for Contaminated Solids, Soils and Sediments (ETeCoS3, FPA no. 2010-0009), the seventh framework program, and the International Research Staff Exchange Scheme (IRSES) project “MinPollControl” (project reference number 247594) and grants from the Region Ile de France. The authors would like to thank Dr. Yann Sivry (IPGP, France) for his valuable help in performing the XRF analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manivannan Sethurajan or Eric D. van Hullebusch.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Zinc plant leach residues are a potential secondary Zn source.

• Significant concentrations of Zn, Cd, and Cu are leachable in ZLRs.

• Zn solubility is mainly driven by dissolution/precipitation mechanisms.

• Hydrozincite, smithsonite, and zincite are the Zn solubility-controlling mineral phases predicted by Visual MINTEQ.

• Hydrozincite, smithsonite, and zincite phases were not detected by the XRD analysis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 908 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethurajan, M., Huguenot, D., Lens, P.N.L. et al. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Environ Sci Pollut Res 23, 7504–7516 (2016). https://doi.org/10.1007/s11356-015-6014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-6014-1

Keywords

Navigation