Skip to main content

Advertisement

Log in

Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine, NE Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mining activity is one of the most important sources of heavy metals in the environment. In NE Tunisia, the former Jebel Ressas mine represents a great hazard due to huge amounts of waste deposited in waste dumps and tailings often with high concentration of heavy metal pollution. The aim of this study was to determine total heavy metal contents in the mining wastes and in the soil samples collected in the vicinity of the former Jebel Ressas mine and to evaluate the mobility of heavy metals in the surrounding agricultural soils. The pH, CEC, organic matter content and total carbonate content in all the samples (soil and tailings) were also measured using the standard methods. The mine tailings are characterized by high levels of Cd (18–89 mg kg−1), Pb (433–5845 mg kg−1) and Zn (1682–40970 mg kg−1). The adjacent soils were also highly contaminated with metals. These toxic metal concentrations exceed those environmental standards proposed by the Off J Eur Communities L181: 6–12 (1986) for agricultural soils (3, 300, and 300 mg kg−1 for Cd, Pb and Zn, respectively). Selective extractions used to estimate the risks of toxic element mobilization show that a very low proportion of heavy metals is water soluble and exchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamo P, Zampella M (2008) Chemical speciation to assess potentially toxic metals (PTMs) bioavailability and geochemical forms in polluted soils. In: De Vivo B, Belkin HE, Lima A (eds) Environmental geochemistry: site characterization, data analysis and case histories. Elsevier, Amsterdam, The Netherlands, pp 175–212

  • Aubert G (1978) Méthodes d’analyses des sols. C.R.D.P, Marseille

    Google Scholar 

  • Banin A, Gerstl Z, Fine P, Metzger Z, Newrzella D (1990) Minimizing soil contamination through control of sludge transformations in soil. Joint German-Israel research projects report. N°: Wt 8678/458

  • Bouhlel S (1993) Gîtologie, minéralogie et essai de modélisation des minéralisations à F-Ba-Sr-Pb-Zn-(S°) associées aux carbonates (jurassiques et cretacés) et aux diapirs triasiques: gisements de Stah-Kohol, Zriba-Guebli, Bou Jaber et Fej Lahdoum (Tunisie Septentrionale) Thèse d’Etat Es-Sciences géologiques. Université de Tunis, FST 293p

  • Boussen S, Sebei A, Soubrand-Colin M, Bril HF, Chaabani Abdeljaouad S (2010) Mobilization of lead-zinc rich particles from mine tailings in northern Tunisia by aeolian and run-off processes. Bull Soc Géol Fr 181:371–379

    Article  Google Scholar 

  • Chakroun HK, Souissi F, Bouchardon JL, Souissi R, Moutte J, Faure O, Remon E, Abdeljaoued S (2010) Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. Afr J Environ Sci Technol 4:651–659

    Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2006) Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97:158–170

    Article  Google Scholar 

  • Clemente R, Paredes C, Bernal MP (2007) A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia, Spain. Agric Ecosyst Environ 118:319–326

    Article  Google Scholar 

  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G (2006) Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere 63:244–253

    Article  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44

    Article  Google Scholar 

  • Cornu S, Clozel B (2000) Extractions séquentielles et spéciation des éléments traces métalliques dans les sols naturels. Etude et Gestion des Sols 7:179–189

    Google Scholar 

  • Council of the European Communities (1986) Directive (86/278/EEC) on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities L181:6–12

    Google Scholar 

  • Cuong DT, Obbard JP (2006) Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Appl Geochem 21:1335–1346

    Article  Google Scholar 

  • Direction Générale des Mines (2005) Annuaire statistique, mines et dérivés. Ministère de l’Industrie (1997–2005), p. 30. Tunis

  • Esshaimi M, Ouazzani N, El Gharmali A, Berrekhis F, Valiente M, Mandi L (2013) Speciation of heavy metals in the soil and the tailings, in the zinc-lead Sidi Bou Othmane Abandoned Mine. J Environ Earth Sci 3:138–146

    Google Scholar 

  • García-Sánchez A, Alonso-Rojo P, Santos-Francés F (2010) Distribution and mobility of arsenic in soils of a mining area (Western Spain). Sci Total Environ 408:4194–4201

    Article  Google Scholar 

  • Ghorbel M, Munoz M, Courjault-Radé P, Destrigneville C, Souissi R, Souissi F, Ben Mammou A, Abdeljaouad S (2010) Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miner’s village of Jebel Ressas (NE Tunisia). Eur J Mineral 22:639–649

    Article  Google Scholar 

  • Gupta SK, Aten C (1993) Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int J Environ Anal Chem 51:25–46

    Article  Google Scholar 

  • Han FX, Banin A (1995) Selective sequential dissolution techniques for trace metals in arid zone soil: the carbonate dissolution step. Comm Soil Sci Plant Anal 26:553–576

    Article  Google Scholar 

  • Iavazzo P, Adamo P, Boni M, Hillier S, Zampella M (2012a) Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. J Geochem Explor 113:56–67

    Article  Google Scholar 

  • Iavazzo P, Ducci D, Adamo P, Trifuoggi M, Migliozzi A, Boni M (2012b) Impact of past mining activity on the quality of water and soil in the High Moulouya Valley (Morocco). Water Air Soil Poll 223:573–589

    Article  Google Scholar 

  • Jacob DL, Otte ML (2004) Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Sci Total Environ 333:9–24

    Article  Google Scholar 

  • Jemmali N, Souissi F, Vennemann TW, Carranza EJM (2011) Genesis of the Jurassic Carbonate-Hosted Pb–Zn deposits of Jebel Ressas (North-Eastern Tunisia): evidence from mineralogy, petrography and trace metal contents and isotope (O, C, S, Pb) geochemistry. Resour Geol 61:367–383

    Article  Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Enviro Qual 30:485–492

    Article  Google Scholar 

  • Lebourg A, Sterckeman T, Ciesielski H, Proix N (1996) Intérêt de différents réactifs d’extraction chimique pour l’évaluation de la biodisponibilité des métaux en traces du sol. Agronomie 16:201–215

    Article  Google Scholar 

  • Li X, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16:1693–1706

    Article  Google Scholar 

  • Lindsay WL (1979) Chemical Equilibria in Soils. Wiley, Chichester, p 450

    Google Scholar 

  • Lottermoser BG (2007) Mine wastes, characterization, treatment, environmental impacts, 2nd edn. Springer, New York

    Google Scholar 

  • Mlayah A, Ferreira da Silva E, Rocha F, Ben Hamza Ch, Charef A, Noronha F (2009) The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments. North-western Tunisia J Geochem Explor 102:27–36

    Article  Google Scholar 

  • Navarro MC, Perez-Sirvent C, Martinez-Sanchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semiaridzone. J Geochem Explor 96:183–193

    Article  Google Scholar 

  • Ramos Arroyo YR, Siebe C (2007) Weathering of sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, Mexico. Catena 71:497–506

    Article  Google Scholar 

  • Rodriguez L, Ruiz E, Alonso-Azcarate J, Rincon J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manage 90:1106–1116

    Article  Google Scholar 

  • Sebei A, Chaabani F, Ouerfelli K, Abdeljaoued S (2006) Evaluation de la contamination des sols par les métaux lourds dans la région minière de Fedj Lahdoum (NW de la Tunisie), Rev Médit Environ. Tunisie, pp.1–13

  • Smuda J, Dold B, Spangenberg JE, Pfeifer HR (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76

    Article  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44: 65–106

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL et al (eds) Methods of soil analysis part 3. Chemical method. American Society of Agronomy, Madison, WI, pp 475–490

    Google Scholar 

  • Umoren IU, Udoh AP, Udousoro II (2007) Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb, and Cd from refuse dump soils using the optimized BCR sequential extraction procedure. Environmentalist 27:241–252

    Article  Google Scholar 

  • Ure AM, Davidson CM (2002) Chemical speciation in soils and related materials by selective chemical extraction. In: Ure AM, Davidson CM (eds) Chemical speciation in the environment. Blackwell Science, Oxford, pp 265–300

    Chapter  Google Scholar 

  • Wang X, Liu Y, Zeng G, Chai L, Xiao X, Song X, Min Z (2008) Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere 72:1260–1266

    Article  Google Scholar 

  • Xiang HF, Tang HA, Ying QH (1995) Transformation and distribution of forms of zinc in acid, neutral and calcareous soils of China. Geoderma 66:121–135

    Article  Google Scholar 

  • Yobouet YA, Adouby K, Trokourey A, Yao B (2010) Cadmium, copper, lead, and zinc speciation in contaminated soils. Int J Eng Sci Technol 2:802–812

    Google Scholar 

  • Yusuf KA (2007) Sequential extractions of lead, copper, cadmium, and zinc in soils near Ojota waste site. J Agron 6:331–337

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Baghdad Ouddane of the University of Sciences and Technology of Lille (France) for his help in chemical analysis. Also, thanks to the anonymous reviewers for their constructive comments that led to an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Elouear.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elouear, Z., Bouhamed, F., Boujelben, N. et al. Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine, NE Tunisia. Environ Earth Sci 75, 254 (2016). https://doi.org/10.1007/s12665-015-5035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5035-x

Keywords

Navigation