Skip to main content
Log in

Phytotoxicity and genotoxicity assessment of imazethapyr herbicide using a battery of bioassays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The imazethapyr herbicide (formulation Verosil®) was evaluated for phytotoxicity and genotoxicity using a battery of bioassays: (1) the growth inhibition of the green alga Pseudokirchneriella subcapitata, (2) the root growth and germination of the higher plant Lactuca sativa, (3) the genetic damage using the Salmonella/microsome test, and (4) the aneugenic and clastogenic effects on Allium cepa. The Verosil® formulation was highly toxic to the non-target green alga (median effective concentration (EC50) = 1.05 ± 0.05 mg active ingredient (a.i.) L−1), and concentrations above 10 mg a.i. L−1 inhibited root elongation in lettuce: relative growth index (RGI) between 0.28 ± 0.01 and 0.66 ± 0.10. No genotoxic effect was observed in S almonella typhimurium at 100 mg a.i. L−1, either with or without the microsomal fraction. However, significant differences in the frequency of chromosomal aberrations in anaphases and telophases (bridges, chromosome fragments, and vagrants) were observed in A. cepa at concentrations between 0.01 and 1 mg a.i. L−1 with respect to the control. The frequencies of micronuclei showed significant differences with respect to the control at concentrations between 0.001 and 0.1 mg a.i. L−1. A very high mitotic index (MI = 93.8 ± 5.8) was observed associated with a high number of cells in the prophase stage at 100 mg a.i. L−1, indicating cytotoxicity. These results showed that imazethapyr is toxic to the non-target populations in both aquatic and terrestrial ecosystems. This herbicide might also exert clastogenic and aneugenic mitotic damage in higher plants. Therefore, the imazethapyr formulation may constitute an environmental risk to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu MM, Lopes J, Santos ES, Magalhães MCF (2014) Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants. J Geochem Explor 142:112–121

    Article  CAS  Google Scholar 

  • Archibald PA, Bold HC (1970) Phycological studies. XI. The genus Chlorococcum meneghini. Univ Texas, Austin, 86 p, Public N° 7015

    Google Scholar 

  • Avigliano L, Fassiano AV, Medesani DA, Ríos de Molina MC, Rodríguez EM (2014) Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M. Bull Environ Contam Toxicol 92(6):631–635

    Article  CAS  Google Scholar 

  • Battaglin WA, Furlong ET, Burkhardt MR, Peter CJ (2000) Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in Rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci Total Environ 248:123–133

    Article  CAS  Google Scholar 

  • Blaise C, Férard JF, Vasseur P (1998) Microplate toxicity tests with microalgae: a review. In: Wells P, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology. Advances, techniques, and practice. CRC, Boca Raton, pp 269–288

    Google Scholar 

  • Bowers N, Pratt JR, Beeson D, Lewis M (1997) Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environ Toxicol Chem 16:207–213

    Article  CAS  Google Scholar 

  • Charles J, Sancey B, Morin-Crini N, Badot PM, Degiorgi F, Trunfio G, Crini G (2011) Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol Environ Saf 74:2057–2064

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1996) Technical guidance document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on risk assessment for existing substances. Part II. Environmental risk assessment. Office for Official Publications of the European Communities, Luxembourg

  • Dutka B (1989) Short-term root elongation toxicity bioassay. Methods for toxicological analysis of waters, wastewaters and sediments. National Water Research Institute (NWRI). Environment Canada, Canada

  • El-Nahas AI (2000) Mutagenic potential of imazethapyr herbicide (Persuit*) on Vicia faba in the presence of urea fertilizer. Pak J Biol Sci 3(5):600–905

    Google Scholar 

  • Environmental Canada (2007) Biological test method: Growth inhibition test using a freshwater algae. EPS 1/RM/25, Environmental Science and Technology Centre, Science and Technology Branch, Environment Canada. Environmental Protection Series, Second Edition, p 53

  • Espy R, Pelton E, Opseth A, Kasprisin J, Nienow AM (2011) Photodegradation of the herbicide imazethapyr in aqueous solution: effects of wavelength, pH, and natural organic matter (NOM) and analysis of photoproducts. J Agric Food Chem 59:7277–7285

    Article  CAS  Google Scholar 

  • Estevam EC, Nakano E, Kawano T, Pereira CAB, Amancio FF, Melo AMMA (2006) Dominant lethal effects of 2,4-D in Biomphalaria glabrata. Mutat Res 611:83–88

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Fiskesjǒ G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112

    Article  Google Scholar 

  • Fragiorge EJ, Alves A, de Rezende A, Graf U, Spanó MA (2008) Comparative genotoxicity evaluation of imidazolinone herbicides in somatic cells of Drosophila melanogaster. Food Chem Toxicol 46:393–401

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21(11):2412–2422

    Article  CAS  Google Scholar 

  • Gholami-Seyedkolaei SJ, Mirvaghefi A, Farahmand H, Kosari AA, Gholami-Seyedkolaei SJ, Gholami-Seyedkolaei SJ (2013) Optimization of recovery patterns in common carp exposed to roundup using response surface methodology: evaluation of neurotoxicity and genotoxicity effects and biochemical parameters. Ecotoxicol Environ Saf 98:152–161

    Article  CAS  Google Scholar 

  • Grant WF (1982) Chromosome aberration assays in Allium. A report of the US Environmental Protection Agency Gene-Tox Program. Mutat Res 99:273–291

    Article  CAS  Google Scholar 

  • Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutation—a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res 426:107–112

    Article  CAS  Google Scholar 

  • Grant WF, Owens ET (2006) Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens. Mutat Res 613(1):17–64

    Article  CAS  Google Scholar 

  • Grisolia CK, Bilich MR, Menezes Formigli L (2004) A comparative toxicologic and genotoxic study of the herbicide arsenal, its active ingredient imazapyr, and the surfactant nonylphenol ethoxylate. Ecotoxicol Environ Saf 59:123–126

    Article  CAS  Google Scholar 

  • Hoshina MM, Marin-Morales MA (2009) Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent. Ecotoxicol Environ Saf 72:2090–2095

    Article  CAS  Google Scholar 

  • Kanaya N, Gill BS, Grover IS, Murin A, Osiecka R, Sandhu SS, Anderson HC (1994) Vicia faba chromosomal aberration assay. Mutat Res 310:231–247

    Article  CAS  Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    Article  CAS  Google Scholar 

  • Lewis MA (1990) Chronic toxicity of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Saf 20:123–140

    Article  CAS  Google Scholar 

  • Lewis MA (1995) Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 87:319–336

    Article  CAS  Google Scholar 

  • Liman R, Ciğerci IH, Öztürk NS (2015) Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic Biochem Physiol 118:38–42

    Article  CAS  Google Scholar 

  • Losi-Guembarovski R, Santos FV, Dias FL, Frederico RG, Cólus IMS (2004) Assessment of the ability of Imazaquin herbicide to induce chromosomal aberrations in vitro in cultured Chinese hamster ovary cells and micronuclei in vivo in mice. Food Chem Toxicol 42:1245–1249

    Article  CAS  Google Scholar 

  • Ma TH (1981) Tradescantia micronucleus bioassay and pollen tube chromatid aberrations test for in situ monitoring and mutagen screening. Environ Health Perspect 37:85–90

    CAS  Google Scholar 

  • Magdaleno A, Gómez CE, Vélez CG, Accorinti J (1997) Preliminary toxicity tests using the green alga Ankistrodesmus falcatus. Environ Toxicol Water Qual 12(1):11–14

    Article  CAS  Google Scholar 

  • Magdaleno A, Saenz ME, Juárez AB, Moretton J (2015) Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 113:72–78

    Article  CAS  Google Scholar 

  • Maron D, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  Google Scholar 

  • Matsumoto ST, Mantovani MS, Malagutti MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol 29:148–158

    CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  Google Scholar 

  • New York State Department of Environmental Conservation (2003) Imazamox (Raptor) NYS DEC Letter—active ingredient registration 3/03. New York State Department of Environmental Conservation. March 13, 2003. New York. <http://pmep.cce.cornell.edu/profiles/herb-growthreg/fatty-alcohol-monuron/Imazamox/Imazamox_reg_303.html> (Accessed 12.04.2014)

  • OECD (2006) OECD guideline for the testing of chemicals. Proposal for updating guideline 208. Terrestrial plant test: 208: seedling emergence and seedling growth test. OECD Publications Service, Paris

    Book  Google Scholar 

  • Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66

    Article  CAS  Google Scholar 

  • Peterson HG, Boutin C, Martin PA, Freemark KE, Ruecker NJ, Moody MJ (1994) Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquat Toxicol 28(3):275–292

    Article  CAS  Google Scholar 

  • PRVD-02 (2010) Imazethapyr. Pest Management Regulatory Agency Health Canada Editors, Otawa, 118 p

    Google Scholar 

  • Radetski CM, Cotelle S, Férard JF (2000) Classical and biochemical endpoints in the evaluation of phytotoxic effects caused by the herbicide trichloroacetate. Environ Exp Bot 44(3):221–229

    Article  CAS  Google Scholar 

  • Ramezani MK, Oliver D, Kookana RS, Lao W, Gill G, Preston C (2010) Faster degradation of herbicidally-active enantiomer of imidazzolinones in soils. Chemosphere 79:1040–1045

    Article  CAS  Google Scholar 

  • Rank J, Nielsen MH (1997) Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutat Res 390:121–127

    Article  CAS  Google Scholar 

  • Romero DM, Ríos de Molina MC, Juárez AB (2011) Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicol Environ Saf 74:741–747

    Article  CAS  Google Scholar 

  • Roshon RD, McCann JH, Thompson DG, Stephenson GR (1999) Effects of seven forestry management herbicides on Myriophyllum sibiricum, as compared with other nontarget aquatic organisms. Can J For Res 29(7):1158–1169

    Article  Google Scholar 

  • Shaner DL, Anderson PC, Stidham MA (1984) Imidazolinones. Potent inhibitors of acetohydoxyacid synthase. Plant Physiol 76:545–546

    Article  CAS  Google Scholar 

  • Siemering GS, Hayworth JD, Greenfield BK (2008) Assesment of potential aquatic herbicide impacts to California aquatic ecosystems. Arch Environ Contam Toxicol 55:415–431

    Article  CAS  Google Scholar 

  • Silveira Moraes B, Clasen B, Loro VL, Pretto A, Toni C, de Avila LA, Marchesan E, de Oliveira Machado SL, Zanella R, Boschmann Reimche G (2011) Toxicological responses of Cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicol Environ Saf 74:328–335

    Article  Google Scholar 

  • Sobrero C, Ronco A (2004) Ensayo de toxicidad aguda con semillas de L. sativa. In: Castillo G (ed) Ensayos toxicológicos y métodos de evaluación de calidad de aguas: estandarización, intercalibración. Resultados y Aplicaciones, México, pp 71–79

    Google Scholar 

  • Srivastava K, Mishra KK (2009) Cytogenetic effects of commercially formulated atrazine on the somatic cells of Allium cepa and Vicia faba. Pestic Biochem Physiol 93:8–12

    Article  CAS  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257. doi:10.1002/ps.993

    Article  CAS  Google Scholar 

  • Tsui MT, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    Article  CAS  Google Scholar 

  • U.S. EPA (1996) Seed germination/root elongation toxicity test. In: Ecological effects test guidelines. Office of Prevention, Pesticides, and Toxic Substances, Series 850, Washington, D.C. http://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=47927

  • U.S. EPA (United States Environmental Protection Agency) (2002) Selenastrum capricornutum growth test. In: Short-term method for estimating the chronic toxicity of effluents and receiving water to freshwater organisms http://water.epa.gov/scitech/methods/cwa/wet/disk3_index.cfm

  • Vendrell E, de Barreda G, Ferraz D, Sabater C, Carrasco JM (2009) Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay. Bull Environ Contam Toxicol 82:538–542

    Article  CAS  Google Scholar 

  • Wang W, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30:289–301

    Article  CAS  Google Scholar 

  • WHO (2005) The WHO recommended classification of pesticides by hazard and guideline to classification. Switzerland, Geneva

    Google Scholar 

  • Young BJ, Riera NI, Beily ME, Bres PA, Crespo DC, Ronco AE (2012) Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicol Environ Saf 76:182–186

    Article  CAS  Google Scholar 

  • Zhang C, Xu J, Liu X, Dong F, Kong Z, Sheng Y, Zheng Y (2010) Impact of imazethapyr on the microbial community structure in agricultural soils. Chemosphere 81:800–806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Buenos Aires University, Argentina, under Projects UBACYT 01/W484 and 01/W9985. The authors are grateful to Mr. Ricardo J. Piccolo for kindly providing the L. sativa and A. cepa seeds to perform the toxicity and genotoxicity assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahí Magdaleno.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdaleno, A., Peralta Gavensky, M., Fassiano, A.V. et al. Phytotoxicity and genotoxicity assessment of imazethapyr herbicide using a battery of bioassays. Environ Sci Pollut Res 22, 19194–19202 (2015). https://doi.org/10.1007/s11356-015-5103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5103-5

Keywords

Navigation