Skip to main content
Log in

Effect of Glyphosate on Growth of Four Freshwater Species of Phytoplankton: A Microplate Bioassay

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The acute toxicity of glyphosate herbicide was tested on the four species of freshwater phytoplankton, Scenedesmus acutus, Scenedesmus subspicatus, Chlorella vulgaris and Chlorella saccharophila. Herbicide concentrations eliciting a 50% growth reduction over 72 h (EC50) ranged from 24.5 to 41.7 mg L−1, whilst a 10% growth inhibition is achieved by herbicide concentrations ranging from 1.6 to 3.0 mg L−1, difficult to find neither in paddy fields (it is not used in rice) nor in the lake of the Albufera Natural Park. Chorella species are less sensitive to the herbicide than Scenedesmus species. It can be concluded that glyphosate has a low potential risk for the tested organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguayo S, Roset J, De la Torre AI, Cuellar ML, Muñoz MJ (2000) Ensayo de ecotoxicidad miniaturizado en Chorella vulgaris utilizando diferentes parámetros de expresión. Rev Toxicol 17:41–45

    CAS  Google Scholar 

  • ASTM (1997) Standard guide for conducting static 96-h toxicity tests with microalgae, E 1218-97a

  • Carrasco JM, Sabater C (1997) Toxicity of atrazine and chlorsulfuron to algae. Toxicol Environ Chem 59:89–99. doi:10.1080/02772249709358427

    Article  CAS  Google Scholar 

  • Chen Y, Chiang H, Wu L, Wang Y (1985) Effects of glyphosate on germination and seedling growth of rice. J Weed Sci Tech 30:219–223

    CAS  Google Scholar 

  • Christy SL, Karlander EP, Parochetti JV (1981) Effects of glyphosate on the growth rate of Chlorella. Weed Sci 29(1):5–7

    CAS  Google Scholar 

  • Comoretto L, Arfib B, Chiron S (2007) Pesticides in the Rhone river delta (France): basic data for a field-based exposure assessment. Sci Total Environ 380:124–132. doi:10.1016/j.scitotenv.2006.11.046

    Article  CAS  Google Scholar 

  • De Paz JM, Rubio JL (2006) Application of a GIS-AF/RF model to asses the risk of herbicide leaching in a citrus-growing area of the Valencia Community, Spain. Sci Total Environ 371:44–54. doi:10.1016/j.scitotenv.2006.07.018

    Article  Google Scholar 

  • Durkin PR (2003) Glyphosate, Human health and ecological risk assessment. USDA forest service. http://www.fs.fed.us/foresthealth/pesticide/pdfs/04a03_glyphosate.pdf. Accessed 3 Sept 2008

  • Eijsackers H (1985) Effects of glyphosate on the soil fauna. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworths, London, p 151

    Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for roundup herbicide. Rev Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Gómez de Barreda Ferraz D, Sabater C, Carrasco JM (2004) Effects of propanil, tebufenozide and mefenacet on growth of tour freshwater species of phytoplankton: a microplate bioassay. Chemosphere 56:315–320. doi:10.1016/j.chemosphere.2004.01.038

    Article  Google Scholar 

  • Hernando F, Royuela M, Muñoz-Rueda A, Gonzalez Murua C (1989) Effect of Glyphosate on the greening process and photosynthetic in Chlorella pyrenoidosa. J Plant Physiol 134:26–31

    CAS  Google Scholar 

  • Källqvist T, Romstad R (1994) Effects of agricultural pesticides on planktonic algae and cyanobacteria, examples of interspecies sensitivity variations. Nor J Agric Sci 13:117–131

    Google Scholar 

  • Kassai F, Hatakeyama S (1993) Herbicide susceptibility in two green algae, Chorella vulgaris and Selenastrum capricornutum. Chemosphere 27:899–904. doi:10.1016/0045-6535(93)90019-2

    Article  Google Scholar 

  • Newman MC (1995) Quantitative methods in aquatic ecotoxicology. Lewis Publishers, London

    Google Scholar 

  • Reish DL, Oshida P (1987) Manual of methods in aquatic environment research. Part 10, Short-Term static bioassays. FAO Fisheries Technical Paper 247. Food and Agriculture Organization of the United Nations

  • Rueppel ML, Brightwell BB, Schaefer J, Marvel JT (1977) Metabolism and degradation of glyphosate in soil and water. J Agric Food Chem 25:517–528. doi:10.1021/jf60211a018

    Article  CAS  Google Scholar 

  • Sabater C, Carrasco JM (1996) Effects of thiobencarb on the growth of three species of phytoplankton. Bull Environ Contam Toxicol 56:977–981. doi:10.1007/s001289900141

    Article  CAS  Google Scholar 

  • Sabater C, Carrasco JM (1997) Effects of chlorsulfuron on growth of three freshwater species of phytoplankton. Bull Environ Contam Toxicol 58:807–813. doi:10.1007/s001289900406

    Article  CAS  Google Scholar 

  • Sabater C, Carrasco JM (1998) Effects of molinate on growth of five freshwater species of phytoplankton. Bull Environ Contam Toxicol 61:534–540. doi:10.1007/s001289900795

    Article  CAS  Google Scholar 

  • Sabater C, Cuesta A, Carrasco R (2002) Effects of bensulfuron–methyl and cinosulfuron on growth of four freshwater species of phytoplankton. Chemosphere 46:953–960. doi:10.1016/S0045-6535(01)00179-5

    Article  CAS  Google Scholar 

  • Sáenz ME, Accorinti J, Tortorelli MC (1993) Toxicity of paraquat to a green alga, Scenedesmus acutus. J Environ Sci Health B 28:193–240. doi:10.1080/03601239309372822

    Article  Google Scholar 

  • Sáenz ME, Alberdi JL, Dimarzio WD, Accorinti J, Tortorelli MC (1997) Paraquat toxicity to different green algae. Bull Environ Contam Toxicol 58:922–928

    Article  Google Scholar 

  • SAS (1988) SAS/STAT User’s Guide: statistics. Version 5. SAS Institute Inc, NC

    Google Scholar 

  • Sloof W, Canton JH, Hermens JLM (1983) Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (Semi) acute toxicity tests. Aquat Toxicol 4:113–128. doi:10.1016/0166-445X(83)90049-8

    Article  Google Scholar 

  • Solomon KR, Thompson DG (2003) Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J Toxicol Environ Health B 6:289–324. doi:10.1080/10937400306468

    Article  CAS  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (1975) Adsorption, mobility and microbial degradation of glyphosate in the soil. Weed Sci 23:229–234

    CAS  Google Scholar 

  • STATGRAPHICS (1994) Statistical Corp. Version 2.1. STSC Inc., Md

    Google Scholar 

  • Torstensson L (1985) Behaviour of glyphosate in soils and its degradation. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworths, London, p 137

    Google Scholar 

  • Wong P (2000) Effects of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll—a synthesis of Scenedesmus quadricauda. Chemosphere 41:177–182. doi:10.1016/S0045-6535(99)00408-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from “Comisión Interministerial de Ciencia y Tecnología, AGL-2002-04532-C03-01”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gómez de Barreda Ferraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vendrell, E., Gómez de Barreda Ferraz, D., Sabater, C. et al. Effect of Glyphosate on Growth of Four Freshwater Species of Phytoplankton: A Microplate Bioassay. Bull Environ Contam Toxicol 82, 538–542 (2009). https://doi.org/10.1007/s00128-009-9674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9674-z

Keywords

Navigation