Skip to main content

Advertisement

Log in

Detection of antibiotic resistance, virulence gene determinants and biofilm formation in Aeromonas species isolated from cattle

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to assess the antibiogram of Aeromonas strains recovered from cattle faeces and the potential pathogenic status of the isolates. The antibiogram of the Aeromonas isolates demonstrated total resistance to clindamycin oxacillin, trimethoprim, novobiocin and ticarcillin. However, Aeromonas strains were sensitive to cefotaxime, oxytetracycline and tobramycin. The Aeromonas strains from Lovedale and Fort Cox farms were found to possess some virulence genes. The percentage distribution was aer 71.4 %, ast 35.7 %, fla 60.7 %, lip 35.7 % and hlyA 25 % for Lovedale farm and aer 63.1 %, alt 10.5 %, ast 55.2 %, fla 78.9 %, lip 21 % and hlyA 35.9 % for Fort Cox farm. Class 1 integron was present in 27 % of Aeromonas isolates; the bla TEM gene was present in 34.8 %, while the blaP1 class A β-lactamase gene was detected in 12.1 % of the isolates. Approximately 86 % of the isolates formed a biofilm on microtitre plates. The presence of multiple antibiotic resistance and virulence genes in Aeromonas isolates from cattle faeces reveals the pathogenic and infectious importance of these isolates and is of great significance to public health. The possession of a biofilm-forming capability by such isolates may lead to difficulty during the management of infection related to Aeromonas species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert MJ, Ansaruzzaman M, Talukder KA, Chopra AK, Kuhn I, Rahman M, Faruque ASG, Islam MS, Sack BR, Möllby R (2000) Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls, and the environment. J Clin Microbiol 38:3785–3790

    CAS  Google Scholar 

  • Avison MB, Niumsup P, Nurmahomed K, Walsh TR, Bennett PM (2004) Role of the ‘cre ⁄ blr-tag’ DNA sequence in regulation of gene expression by the Aeromonas hydrophila β-lactamase regulator, BlrA. J Antimicrob Chemother 53:197–202

    Article  CAS  Google Scholar 

  • Barlow RS, Pemberton JM, Desmarchelier PM, Gobius KS (2004) Isolation and characterization of integron-containing bacteria without antibiotic selection. Antimicrob Agents Chemother 48:838–842

    Article  CAS  Google Scholar 

  • Basson A, Flemming LA, Chenia HY (2007) Evaluation of adherence, hydrophobicity, aggregation characteristics and biofilm development of Flavobacterium johnsoniae-like isolates from South African aquaculture systems. Microbial Ecol 55:1–14

    Article  Google Scholar 

  • Bell M (2001) Biofilms: a clinical perspective. Curr Infect Dis Rep 3:483–486

    Article  Google Scholar 

  • Cascón A, Jugueros J, Temprano A, Sánchez M, Hermanz C, Lunego MJ, Naharro G (2000) A major secreted elastase is essential for pathogenecity of Aeromonas hydrophila. Infect Immun 68:2333–2341

    Article  Google Scholar 

  • Ceylan E, Berktas M, Ağaoğlu Z (2009) The occurrence and antibiotic resistance of motile Aeromonas in livestock. Trop. Anim Health Prod 41:199–204

    Article  Google Scholar 

  • Ceylan E, Berktas M, Korkoca H, Keles I, Bozkurt H, Kurtoglu MG (2003) Prevalence and antibiotic sensitivity of motile Aeromonas in Dogs. Acta Vet Brno 72:607–612

    Article  CAS  Google Scholar 

  • Chacón MR (2003) Characterization of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int J Food Microbiol 84:41–49

    Article  Google Scholar 

  • Chaung YC, Chiou SF, Su JH, Wu MI, Chang MC (1997) Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila. MCC-2. Microbiol 143:803–812

    Article  Google Scholar 

  • Chopra AK, Houston CW, Peterson JW, Jin GO (1993) Cloning, expression, and sequence analysis of a cytolytic enterotoxin gene from Aeromonas hydrophila. Can J Microbiol 39:513–523

    Article  CAS  Google Scholar 

  • Chopra AK, Pham R, Houston CW (1994) Cloning and expression of putative cytotonic enterotoxin-encoding genes from Aeromonas hydrophila. Gene 139:87–91

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (2006) Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard M7-A7, 7th edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Coquet L, Cosette P, Quillet L, Petit F, Junter GA, Jouenne T (2002) Occurrence and phenotypic characterization of Yersinia ruckeri strains with biofilm-forming capacity in a rainbow trout farm. Appl Environ Microbiol 68:470–475

    Article  CAS  Google Scholar 

  • Dashe YG, Raji MA, Abdu PA, Oladele BS (2013) Aeromonas hydrophila infections in chickens affected by fowl cholera in Jos Metropolis, Nigeria. Int J Microbiol Immunol Res 1:032–036

    Google Scholar 

  • Ferguson MR, Xu XJ, Houston CW, Peterson JW, Coppenhaver DH, Popov VL, Chopra AK (1997) Hyperproduction, purification and mechanism of action of the cytotoxic enterotoxin produced by Aeromonas hydrophila. Infect Immun 65:4299–4308

    CAS  Google Scholar 

  • Gavin R, Rabaan AA, Merino S, Tomás JM, Gryllos I, Shaw JG (2002) Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 43:383–397

    Article  CAS  Google Scholar 

  • Girlich D, Poirel L, Nordmann P (2011) Diversity of clavulanic acid-inhibited extended- spectrum β-Lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrob Agents Chemother 55:1256–126

    Article  CAS  Google Scholar 

  • Goni-Urriza M, Arpin C, Capdepuy M, Dubois V, Caumette P, Quentin C (2002) Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. Antimicrob Agents Chemother 46:350–359

    Article  CAS  Google Scholar 

  • Gray SJ, Stickler DJ (1989) Some observations on the faecal carriage of mesophilic Aeromonas species in cows and pigs. Epidemiol Infect 103:523–537

    Article  CAS  Google Scholar 

  • Hassani A, Javaid U, Kaleemi F, Omairiii M, Khalidi A, Muhammad I (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15:345–350

    Google Scholar 

  • Heuzenroeder MW, Wong CY, Flower RL (1999) Distribution of two hemolytic toxin genes in clinical and environmental isolates of Aeromonas spp.: correlation with virulence in a suckling mouse model. FEMS Microbiol Lett 174:131–136

    Article  CAS  Google Scholar 

  • Igbinosa IH, Okoh AI (2013) Detection and distribution of putative virulence associated genes in Aeromonas species from freshwater and wastewater treatment plant. J Basic Microbiol 52:1–7

    Google Scholar 

  • Igbinosa IH, Chigor VN, Igbinosa EO, Obi LC, Okoh AI (2013) Antibiogram, adhesive characteristics, and incidence of class 1 integron in Aeromonas species isolated from two South African rivers. BioMed Res Int Article ID 127570, 8 pages

  • Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J Article ID 625023, 13 pages

  • Igbinosa IH, Okoh AI (2012) Antibiotic susceptibility profile of Aeromonas species isolated from wastewater treatment plant. Sci World J Article ID 764563, 6 pages

  • Igbinosa IH (2014) Antibiogram profiling and pathogenic status of Aeromonas species recovered from chicken. Saudi J Biol Sci 21:481–485

    Article  CAS  Google Scholar 

  • Igbinosa IH (2015) Prevalence and detection of antibiotic-resistant determinant in Salmonella isolated from food-producing animals. Trop Anim Health Prod 47:37–43

    Article  Google Scholar 

  • Jacobs L, Chenia HY (2007) Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int J Food Microbiol 114:295–306

    Article  CAS  Google Scholar 

  • Janda MJ, Abbott SL (2010) The Genus Aeromonas: Taxonomy, pathogenicity and infection. Clin Microbiol Rev 23:35–73

    Article  CAS  Google Scholar 

  • Jindal N, Garg SR, Kumar A (1993) Comparison of Aeromonas spp. isolated from human, livestock and poultry faeces. Israel J Vet Med 48:80–83

    Google Scholar 

  • Kampfer P, Christmann C, Swing J, Huys G (1999) In vitro susceptibilities of Aeromonas genomic species to antimicrobial agents. Syst Appl Microbiol 22:662–669

    Article  CAS  Google Scholar 

  • Karunasagar I, Otta SK, Karunasagar I (1996) Biofilm formation by Vibrio harveyi on surfaces. Aquacult 140:241–245

    Article  Google Scholar 

  • Kirov SM, Castrisios M, Shaw JG (2004) Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945

    Article  CAS  Google Scholar 

  • Kirov SM, Tassell BC, Annalese BT, Semmler ABT, O'Donovan LA, Rabaan AA, Shaw JW (2002) Lateral flagella and swarming motility in Aeromonas species. J Bacteriol 184:547–555

    Article  CAS  Google Scholar 

  • Krovacek K, Faris A, Mansson I (1991) Growth of and toxin production by Aeromonas hydrophila and Aeromonas sobria at low temperatures, Swedish University of Agricultural Sciences, Uppsala. Int J Food Microbiol 13:165–175

    Article  CAS  Google Scholar 

  • Leonard N, Blancheton JP, Guiraud JP (2000) Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquat Eng 22:109–120

    Article  Google Scholar 

  • Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z (2009) Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 11:1506–1517

    Article  CAS  Google Scholar 

  • Majeed K, Egan A, MacRae TC (1989) Enterotoxigenic aeromonads on retail lamb meat and offal. J Appl Bacteriol 67:165–170

    Article  CAS  Google Scholar 

  • Marchandin H, Godreuil S, Darbas H, Jean-Pierre H, Jumas-Bilak E, Chanal C, Bonnet R (2003) Extended-spectrum β-lactamase TEM-24 in an Aeromonas clinical strain: acquisition from the prevalent Enterobacter aerogenes clone in France. Antimicrob Agents Chemother 47:3994–3995

    Article  CAS  Google Scholar 

  • Morita K, Watanabe N, Kurata S, Kanamori M (1994) β-Lactam resistance of motile Aeromonas Isolates from clinical and environmental sources. Antimicrob Agents Chemother 38:353–355

    Article  CAS  Google Scholar 

  • Nagar V, Shashidhar R, Bandekar JR (2011) Prevalence, characterization and antimicrobial resistance of Aeromonas strains from various retail food products in Mumbai, India. J Food Sci 76:486–492

    Article  Google Scholar 

  • Nam I, Joh K (2007) Rapid detection of virulence factors of Aeromonas isolated from a trout farm by hexaplex-PCR. J Microbiol 45:297–304

    CAS  Google Scholar 

  • Nawaz M, Khan SA, Khan AA, Sung K, Tran Q, Kerdahi K, Steele R (2010) Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food Microbiol 27:327–331

    Article  CAS  Google Scholar 

  • Ndi OL, Barton MD (2011) Incidence of class 1 integrons and other antibiotic resistance determinants in Aeromonas spp. from rainbow trout farms in Australia. J Fish Dis 34:589–599

    Article  CAS  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Ann Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Odeyemi OA, Asmat A, Usup G (2012) Antibiotics resistance and putative virulence factors of Aeromonas hydrophila isolated from estuary. J Microbiol Biotech Food Sci 1:1339–1357

    Google Scholar 

  • Orozova P, Chikova V, Najdenski H (2010) Antibiotic resistance of pathogenic for fish isolates of Aeromonas spp. Bulg J Agric Sci 16:376–386

    Google Scholar 

  • Palumbo SA, Maxino F, Williams AC, Buchanan RL, Thayer DW (1985) Starch ampicillin agar for the quantitative detection of Aeromonas hydrophila. Appl Environ Microbiol 50:1027–1030

    CAS  Google Scholar 

  • Pemberton JM, Kidd SP, Schmidt R (1997) Secreted enzymes of Aeromonas. FEMS Microbiol Lett 152:1–10

    Article  CAS  Google Scholar 

  • Pérez-Valdespino A, Fernández-Rendón E, Curiel-Quesada E (2009) Detection and characterization of class 1 integrons in Aeromonas spp. isolated from human diarrheic stool in Mexico. J Basic Microbiol 49:572–578

    Article  Google Scholar 

  • Pontes DS, Pinheiro FA, Lima-Bittencourt CI, Guedes RLM, Cursino L, Barbosa F, Santos FR, Chartone-Souza E, Nascimento AMA (2009) Multiple antimicrobial resistance of Gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. Microbial Ecol 58:762–772

    Article  CAS  Google Scholar 

  • Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC (2002) Veterinary Microbiology and Microbial Disease. Iowa State University Press, Ames, Iowa, p 536

    Google Scholar 

  • Rabaan AA, Gryllos I, Tomas JM, Shaw JG (2001) Motility and polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect Immun 69:4257–4267

    Article  CAS  Google Scholar 

  • Ramalivhana JN, Obi CL, Moyo SR (2010) Prevalence of Extended-spectrum β-Lactamases producing Aeromonas hydrophila isolated from stool sample collected in the Limpopo Province, South Africa. Afr J Microbiol Res 4:1203–1208

    CAS  Google Scholar 

  • Riley MR, Gerba CP, Elimelech M (2011) Biological approaches for addressing the grand challenge of providing access to clean drinking water. J Biol Eng 5:7

    Article  Google Scholar 

  • Rossi Júnior OD, Amaral LA, Filho NA, Schocken-Iturrino RP (2006) Bacteria of the genus Aeromonas in different locations throughout the process line of beef slaughtering. Revista Portuguesa de Ciências Veterinárias 101:125–129

    Google Scholar 

  • Schmidt AS, Bruun MS, Dalsgaard I, Larsen JL (2001) Incidence, distribution and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from fish farming environment. Appl Environ Microbiol 67:5675–5682

    Article  CAS  Google Scholar 

  • Scoaris O, Colacite J, Nakamura CV, Ueda-Nakamura T, Abreu BAF, Dias BPF (2008) Virulence and antibiotic susceptibility of Aeromonas spp. isolated from drinking water. Antonie Van Leeuwenhoek 93:111–122

    Article  CAS  Google Scholar 

  • Sørum H, Labee-Lund TM, Solberg A, Anette W (2003) Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemother 47:1285–1290

    Article  Google Scholar 

  • Stepanović S, Vuković D, Dakić I, Savić B, Ŝvabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth 40:175–179

    Article  Google Scholar 

  • Stern NJ, Drazek ES, Joseph SW (1987) Low incidence of Aeromonas sp. in livestock feces. J Food Protect 50:66–69

    Google Scholar 

  • Stevens A, Kaboré Y, Perrier-Gros-Claude J, Millemann Y, Brisabois A, Catteau M, Cavin J, Dufour B (2006) Prevalence and antibiotic-resistance of Salmonella isolated from beef sampled from the slaughterhouse and from retailers in Dakar (Senegal). Int J Food Microbiol 110:178–186

    Article  CAS  Google Scholar 

  • Vandendriessche F (2008) Meat products in the past, today and in the future. Meat Sci 78:104–113

    Article  Google Scholar 

  • Vila J, Marco F, Soler M, Chacón M, Figueras MJ (2002) In vitro antimicrobial susceptibility of clinical isolates of Aeromonas caviae, Aeromonas hydrophila, and Aeromonas veronii biotype sobria. J Antimicrob Chemother 49:701–702

    Article  CAS  Google Scholar 

  • Wu C, Chuang Y, Lee M, Le C, Lee H, Lee N, Chang C, Chen P, Lin Y, Yan J, Ko W (2011) Bacteremia due to extended-spectrum-β-Lactamase-producing Aeromonas spp. at a medical center in southern Taiwan. Antimicrob Agents Chemother 55:5813–5818

    Article  CAS  Google Scholar 

  • Zanella JFP, da Luz RB, Fadanelli R, Figueiró MP, Delamare APL, Pinto da Costa SOP, Echeverrigaray S (2012) High prevalence of Aeromonas spp. in poultry farmers from a rural community of South Brazil. Asia Pac J Mol Biol Biotechnol 20:93–98

    Google Scholar 

Download references

Acknowledgments

We’re grateful to the South Africa Medical Research Council and the University of Fort Hare for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors state that there have been no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isoken H. Igbinosa.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igbinosa, I.H., Igbinosa, E.O. & Okoh, A.I. Detection of antibiotic resistance, virulence gene determinants and biofilm formation in Aeromonas species isolated from cattle. Environ Sci Pollut Res 22, 17596–17605 (2015). https://doi.org/10.1007/s11356-015-4934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4934-4

Keywords

Navigation