Skip to main content
Log in

Multiple Antimicrobial Resistance of Gram-Negative Bacteria from Natural Oligotrophic Lakes Under Distinct Anthropogenic Influence in a Tropical Region

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the resistance to ten antimicrobial agents and the presence of bla TEM1 gene of Gram-negative bacteria isolated from three natural oligotrophic lakes with varying degrees of anthropogenic influence. A total of 272 indigenous bacteria were recovered on eosin methylene blue medium; they were characterized for antimicrobial resistance and identified taxonomically by homology search and phylogenetic comparisons. Based on 16S ribosomal RNA sequences analysis, 97% of the isolates were found to be Gram-negative bacteria; they belonged to 11 different genera. Members of the genera Acinetobacter, Enterobacter, and Pseudomonas predominated. Most of the bacteria were resistant to at least one antimicrobial. The incidence of resistance to β-lactams, chloramphenicol, and mercury was high, whereas resistance to tetracycline, aminoglycosides, and nalidixic acid was low. There was a great frequency of multiple resistances among the isolates from the three lakes, although no significant differences were found among the disturbed and reference lakes. The ampicillin resistance mechanism of 71% of the isolates was due to the gene bla TEM1 . Our study suggests that multiresistant Gram-negative bacteria and the bla TEM1 gene are common in freshwater oligotrophic lakes, which are subject to different levels of anthropogenic inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Agerso Y, Sandvang D (2005) Class 1 integrons and tetracycline resistance genes in alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71:7941–7947

    Article  PubMed  CAS  Google Scholar 

  2. Alonso A, Sanchez P, Martinez JL (2001) Environmental selection of antibiotic resistance genes. Environ Microbiol 3:1–9

    Article  PubMed  CAS  Google Scholar 

  3. Andrews JM (2001) BSAC standardized disc susceptibility testing method. J Antimicrob Chemother 48:43–57

    Article  PubMed  CAS  Google Scholar 

  4. Ash RJ, Mauck B, Morgan M (2002) Antibiotic resistance of Gram-negative bacteria in rivers, United States. Emerg Infect Dis 8:713–716

    PubMed  Google Scholar 

  5. Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  PubMed  CAS  Google Scholar 

  6. Barbosa FAR, Ppadisãk J (2002) The forgotten lake stratification pattern: atelomixis, and its ecological importance. Verh Int Verein Limnol 28:1385–1395

    CAS  Google Scholar 

  7. Brizas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C (2002) Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46:3156–3163

    Article  CAS  Google Scholar 

  8. Castro-Escarpulli G, Figueras MJ, Aguilera-Arreola G, Soler L, Fernandez-Rendon E, Aparicio GO, Guarro J, Chacon MR (2003) Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int J Food Microbiol 84:41–49

    PubMed  CAS  Google Scholar 

  9. Díaz-Cruz MS, Alda MJL, Barceló D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem 22:340–351

    Article  CAS  Google Scholar 

  10. Dolzani L, Tonin E, Lagatolla C, Monti-Bragadin C (1994) Typing of Staphylococcus aureus by amplification of the 16S–23S intergenic spacer sequences. FEMS Microbiol Lett 119:167–174

    PubMed  CAS  Google Scholar 

  11. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38:3623–3630

    PubMed  CAS  Google Scholar 

  12. Drucker VV, Panasyuk EY (2006) Potentially pathogenic bacteria in a microbial community of Lake Baikal. Hydrobiologia 568:267–271

    Article  Google Scholar 

  13. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  14. Fluit AC, Visser MR, Schmitz FJ (2001) Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14:836–871

    Article  PubMed  CAS  Google Scholar 

  15. George AM (1996) Multidrug resistance in enteric and other gram-negative bacteria. FEMS Microbiol Lett 139:1–10

    Article  PubMed  CAS  Google Scholar 

  16. Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA (1999) Antibiotic resistance found in wild rodents. Nature 401:233–234

    Article  PubMed  CAS  Google Scholar 

  17. Goñi-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin C (2000) Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microbiol 66:125–132

    Article  PubMed  Google Scholar 

  18. Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for chemical analysis of fresh waters. Blackwell Scientific, Oxford

    Google Scholar 

  19. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  20. Green P. (1994) PHRAP documentation. http://www.phrap.org

  21. Guardabassi L, Dalsgaard A, Olsen JE (1999) Phenotypic characterization and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. J Appl Microbiol 87:659–667

    Article  PubMed  CAS  Google Scholar 

  22. Hall BG, Barlow M (2004) Evolution of the serine β-lactamases: past, present and future. Drug Resist Updat 7:111–123

    Article  PubMed  CAS  Google Scholar 

  23. Hazen TC (1988) Fecal coliforms as indicators in tropical waters: a review. Int J Toxic Assess 3:461–47

    Article  CAS  Google Scholar 

  24. Henriques I, Moura A, Alves A, Saavedra MJ, Correia A (2006) Analysing diversity among beta-lactamase encoding genes in aquatic environments. FEMS Microbiol Ecol 56:418–429

    Article  PubMed  CAS  Google Scholar 

  25. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, Ecker DJ, Massire C, Eshoo MW, Sampath R, Thomson JM, Rather PN, Craft DW, Fishbain JT, Ewell AJ, Jacobs MR, Paterson DL, Bonomo RA (2006) Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 50:4114–4123

    Article  PubMed  CAS  Google Scholar 

  26. Kirby JT, Sader HS, Walsh TR, Jones RN (2004) Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J Clin Microbiol 42:445–448

    Article  PubMed  CAS  Google Scholar 

  27. Krumperman PH (1983) Multiple antibiotic resistance indexing Escherichia coli to identify risk sources of faecal contamination of foods. Appl Environ Microbiol 46:165–170

    PubMed  CAS  Google Scholar 

  28. Krumperman PH (1985) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46:165–170

    Google Scholar 

  29. Kummerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320

    Article  PubMed  CAS  Google Scholar 

  30. Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    PubMed  CAS  Google Scholar 

  31. Laitinen S, Nevalainen A, Kotimaa M, Liesivuori J, Martikainen P (1992) Relationship between bacterial counts and endotoxin concentrations in the air of wastewater treatment plants. Appl Environ Microbiol 58:3774–3776

    PubMed  CAS  Google Scholar 

  32. Latini AO, JrM P (2004) Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fish Manag Ecol 11:71–79

    Article  Google Scholar 

  33. Levy S (1997) Antibiotic resistance: an ecological imbalance. In Antibiotic resistance: origins, evolution, selection and spread. In Ciba Foundation Symposium 207

  34. Levy SB (2001) Antibiotic resistance: consequences of inaction. Clin Infect Dis 33:124–129

    Article  Google Scholar 

  35. Levy SB (2005) Antibiotic resistance—the problem intensifies. Adv Drug Deliv Rev 57:1446–1450

    Article  PubMed  CAS  Google Scholar 

  36. Lima-Bittencourt CI, Cursino L, Gonçalves-Dornelas H, Pontes DS, Nardi RMD, Callisto M, Chartone-Souza E, Nascimento AMA (2007) Multiple antimicrobial resistance in Enterobacteriaceae isolates from pristine freshwater. Gen Mol Res 6:510–521

    CAS  Google Scholar 

  37. Livermore DM (1995) Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584

    PubMed  CAS  Google Scholar 

  38. Lobova TI, Maksimova EY, Popova LY, Pechurkin NS (2002) Geographical and seasonal distribution of multiple antibiotic resistance of heterotrophic bacteria of Lake Shira. Aquat Ecol 36:299–307

    Article  Google Scholar 

  39. Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44:357–363

    Article  PubMed  CAS  Google Scholar 

  40. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  41. Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371

    Article  PubMed  CAS  Google Scholar 

  42. Lu JJ, Perng CL, Lee SY, Wan CC (2000) Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol 38:2076–2080

    PubMed  CAS  Google Scholar 

  43. Mabilat C, Courvalin P (1990) Development of “olygotyping” for characterization and molecular epidemiology of TEM-lactamase in members of the family Enterobacteriaceae. Antimicrob Agents Chemother 34:2210–2216

    PubMed  CAS  Google Scholar 

  44. MacGowana AP, Wise R (2001) Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests. J Antimicrob Chemother 1:17–28

    Google Scholar 

  45. Mackereth FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Freshwater Biological Association Scientific Publication, 36, Titus Wilson & Sons Ltd, Kendal, p 117p

    Google Scholar 

  46. Nascimento AMA, Chartone-Souza E (1999) Re-evaluation of antibiotic and mercury resistance in Escherichia coli populations isolated in 1978 from Amazonian rubber tree tappers and Indians. Res Microbiol 150:407–411

    Article  PubMed  CAS  Google Scholar 

  47. Nascimento AMA, Cursino L, Gonçalves-Dornelas H, Reis A, Chartone-Souza E, Marini MA (2003) Antibiotic-resistant Gram-negative bacteria in birds from the Brazilian Atlantic forest. Condor 105:358–361

    Article  Google Scholar 

  48. National Committee for Clinical Laboratory Standards (NCCLS) (2001) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. ASM, Washington

    Google Scholar 

  49. Ndip RN, Dilonga HM, Ndip LM, Akoachere JF, Nkuo Akenji T (2005) Pseudomonas aeruginosa isolates recovered from clinical and environmental samples in Buea, Cameroon: current status on biotyping and antibiogram. Trop Med Int Health 10:74–81

    Article  PubMed  CAS  Google Scholar 

  50. O’Brien TF (2002) Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis 34:78–84

    Article  Google Scholar 

  51. Pagioro TA, Velho LFM, Lansac-Tôha FA, Pereira DG, Nakamura AKS, Perenha MCZ, Santos VD (2003). Influência do grau de trofia sobre os padrões de abundância de bactérias e protozoários planctônicos em reservatórios do Estado do Paraná. In: Rodrigues, L.; Agostinho, A. A.; Gomes, L. C. & Thomaz, S. M. (eds). Anais do Workshop Produtividade em Reservatórios e Bioindicadores. Nupélia. Maringá. 281p.

  52. Petrucio MM, Barbosa FAR, Furtado ALS (2006) Bacterioplankton and phytoplankton production in seven lakes in the middle Rio Doce basin, south-east Brazil. Limnologica 36:192–203

    CAS  Google Scholar 

  53. Pontes DS, Lima-Bittencourt CI, Azevedo MSP, Chartone-Souza E, Nascimento AMA (2007) Phenotypic and genetic analysis of Enterobacter spp. from a Brazilian oligotrophic freshwater lake. Can J Microbiol 53:983–991

    Article  PubMed  CAS  Google Scholar 

  54. Institute SAS (1987) SAS/STAT guide for personal computers, version 6. SAS Institute, Cary, NC

    Google Scholar 

  55. Salas HJ, Martino P (1991) A simplified phosphorus trophic state model for warm-water tropical lakes. Water Res 25:341–350

    Article  CAS  Google Scholar 

  56. Singer RS, Ward MP, Maldonado G (2006) Can landscape ecology untangle the complexity of antibiotic resistance? Nat Rev Microbiol 4:943–952

    Article  PubMed  CAS  Google Scholar 

  57. Speldooren V, Heym B, Labia R, Nicolas-Chanoine MH (1998) Discriminatory detection of inhibitor-resistant beta-lactamases in Escherichia coli by single-strand conformation polymorphism-PCR. Antimicrob Agents Chemother 42:879–884

    PubMed  CAS  Google Scholar 

  58. Stabili L, Cavallo RA (2004) Biodiversity of culturable heterotrophic bacteria in the southern Adriatic Sea Italian coastal waters. Sci Mar 68:31–41

    Article  CAS  Google Scholar 

  59. Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, Toronto, Ontario, Canada

    Google Scholar 

  60. Summers AO (2002) Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 34:85–92

    Article  Google Scholar 

  61. Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opin Microbiol 4:493–499

    Article  PubMed  CAS  Google Scholar 

  62. Valdezate S, Vindel A, Loza E, Baquero F, Cantón R (2001) Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains. Antimicrob Agents Chemother 45:1581–1584

    Article  PubMed  CAS  Google Scholar 

  63. Watanable K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262

    Article  Google Scholar 

  64. Weldhagen GF (2004) Integrons and beta-lactamases—a novel perspective on resistance. Int J Antimicrob Agents 23:556–562

    Article  PubMed  CAS  Google Scholar 

  65. White DG, Mcdermott PF (2001) Emergence and transfer of antibacterial resistance. J Dairy Sci 84:151–155

    Article  Google Scholar 

Download references

Acknowledgments

We thank FAPEMIG and CNPq for providing financial support. DSP, FRS, and AMAN were supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. A. Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontes, D.S., Pinheiro, F.A., Lima-Bittencourt, C.I. et al. Multiple Antimicrobial Resistance of Gram-Negative Bacteria from Natural Oligotrophic Lakes Under Distinct Anthropogenic Influence in a Tropical Region. Microb Ecol 58, 762–772 (2009). https://doi.org/10.1007/s00248-009-9539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9539-3

Keywords

Navigation