Skip to main content
Log in

Time series model prediction and trend variability of aerosol optical depth over coal mines in India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A study of the assessment and management of air quality was carried out at 11 coal mines in India. Long-term observations (about 13 years, March 2000–December 2012) and modeling of aerosol loading over coal mines in India are analyzed in the present study. In this respect, the Box-Jenkins popular autoregressive integrated moving average (ARIMA) model was applied to simulate the monthly mean Terra Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD550 nm) over 11 sites in the coal mines region. The ARIMA model was found as the most suitable model with least normalized Bayesian information criterion (BIC) and root mean square error and high value of R 2. Estimation was done with the Ljung-Box test. Finally, a forecast for a 3-year period from January 2013 to December 2015 was calculated which showed that the model forecasted values are following the observed trend quite well over all mining areas in India. The average values of AOD for the next 3 years (2013–2015) at all sites are found to be 0.575 ± 0.13 (Raniganj), 0.452 ± 0.12 (Jharia), 0.339 ± 0.13 (Bokaro), 0.280 ± 0.09 (Bishrampur), 0.353 ± 0.13 (Korba), 0.308 ± 0.08 (Talcher), 0.370 ± 0.11 (Wardha), 0.35 ± 0.10 (Adilabad), 0.325 ± 0.09 (Warangal), 0.467 ± 0.09 (Godavari Valley), and 0.236 ± 0.07 (Cuddapah), respectively. In addition, long-term lowest monthly mean AOD550 values are observed over Bishrampur followed by Cuddapah, Talcher, Warangal, Adilabad, Korba, Wardha, Godavari Valley, Jharia, and Raniganj. Raniganj and Jharia exhibit the highest AOD values due to opencast mines and extensive mining activities as well as a large number of coal fires. Similarly, the highest AOD values are observed during the monsoon season among all four seasons over all the mining sites. Raniganj exhibits the highest AOD value at all seasons and at all sites. In contrast, the lowest seasonal AOD values are observed during the post-monsoon season over Raniganj, Talcher, Wardha, Adilabad, Warangal, and Godavari Valley. Similarly, over Jharia, Bokaro, Bishrampur, Korba, and Cuddapah, the lowest AOD values are found in the winter season. Increasing trends in AOD550 have been observed over Raniganj, Bokaro, Bishrampur, Korba, Talcher, and Wardha as well as over Adilabad and Godavari Valley, which is in agreement with previous works. Negative or decreasing AOD trend is found only over Jharia, Warangal, and Cuddapah without being statistically significant. Seasonal trends in AODs have also been studied in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Aziz A, Frey HC (2003) Development of hourly probabilistic utility NOx emission inventories using time series techniques: part I—univariate approach. Atmos Environ 37:5379–5389

    Article  CAS  Google Scholar 

  • Abish B, Mohanakumar K (2013) A stochastic model for predicting aerosol optical depth over the north Indian region. Int J Remote Sens 34:1449–1458

    Article  Google Scholar 

  • Ballester EB, Valls GC, Carrasco-Rodriguez JL, Olivas ES, Valle-Tascon SD (2002) Effective 1-day ahead prediction of hourly surface ozone concentrations in Eastern Spain using linear models and neural networks. Ecol Model 156(1):27–41

    Article  Google Scholar 

  • Canter LW (1996) Environmental impact assessment. McGraw-Hill, New York

    Google Scholar 

  • Chattopadhyay G, Chattopadhyay S (2009) Autoregressive forecast of monthly total ozone concentration—a neurocomputing approach. Comput Geosci 35(9):1925–1932

    Article  CAS  Google Scholar 

  • Chaudhari PR, Gajghate DG (2000) Assessment of air pollution effect on plants—a review. Indian J Environ Protect 20:925–933

    CAS  Google Scholar 

  • Chaulya SK (2004) Spatial and temporal variations of SPM RPM SO2 and NOx concentrations in an opencast coal mining area. J Environ Monit 6:134–142. doi:10.1039/B309372G

    Article  CAS  Google Scholar 

  • Chaulya SK (2005) Air quality status of an open pit mining area in India. Environ Monit Assess 105(1–3):369–389

    Article  CAS  Google Scholar 

  • Chaulya SK, Chakrabarty MK (1995) Perspective of new national mineral policy and environmental control for mineral sector. In GS Khuntia (Ed) Proceeding of National Seminar on Status of Mineral Exploitation in India New Delhi India: 174–123

  • Chaulya SK, Chakraborty MK, Singh RS (1998) Air pollution monitoring and modelling technique for opencast mine. Environ Geochem 2:35–42

    Google Scholar 

  • Chaulya SK, Chakraborty MK, Singh RS (2000) Prediction of air pollution for a proposed opencast coal mine transaction institution of mining and metallurgy. Sect A: Min Ind 109:PA118–A124

    Google Scholar 

  • Chaulya SK, Kumar AK, Tripathi M, Singh N, Mishra RS, Bandyopadhyay LK (2012) Assessment of coal mine road dust properties for controlling air pollution. Int J Environ Protect IJEP 1(2):PP1–PP7, World Academic Publishing

    Google Scholar 

  • Chelani A, Devotta S (2006) Air quality forecasting using a hybrid auto-regressive and nonlinear model. Atmos Environ 40(10):1774–1780

    Article  CAS  Google Scholar 

  • CMRI (1998) Determination of emission factor for various opencast mining activities report GAP/9/EMG/MOEF/97. Central Mining Research Institute Environmental Management Group, Dhanbad

    Google Scholar 

  • CPCB (2012) National ambient air quality monitoring NAAQMS/ 35 /2011 2012 (http://www.cpcb.nic.in/upload/NewItems/NewItem_192_NAAQSTI.pdf)

  • Crabbe H, Beaumont R, Norton D (2000) Assessment of air quality emissions and management in a local urban environment. Environ Monit Assess 65:435–442

    Article  CAS  Google Scholar 

  • Dey S, Di Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38:L14811. doi:10.1029/2011GL048153

    Google Scholar 

  • Dey S, Tripathi SN, Singh RP, Holben B (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res 109:D20211, Article ID

    Article  Google Scholar 

  • Di Girolamo L, Bond TC, Bramer D, Diner DJ, Fettinger F, Kahn RA (2004) Analysis of multi-angle imaging spectroradiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys Res Lett 31:L23115. doi:10.1029/2004GL021273

    Google Scholar 

  • Ferreira F, Tente H, Torres P, Carboso S, Palmaoliveira JM (2000) Air quality monitoring and management in Lisbon. Environ Monit Assess 65:443–450

    Article  CAS  Google Scholar 

  • Ganguly D, Jayaraman A, Gadhavi H (2006) Physical and optical properties of aerosols over an urban location in western India: seasonal variabilities. J Geophys Res 111:D24206. doi:10.1029/2006JD007392

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau K-M, Tsay S-C, Kafatos M (2009) Enhanced premonsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys Res Lett 36:L07704. doi:10.1029/2009GL037641

    Google Scholar 

  • Gautam R, Hsu NC, Lau WK-M, Yasunari TJ (2013) Satellite observations of desert dust-induced Himalayan snow darkening. Geophys Res Lett 40:988–993. doi:10.1002/grl50226

    Article  Google Scholar 

  • George KV, Patil DD, Alappat BJ (2013) PM10 in the ambient air of Chandrapur coal mine and its comparison with other environments. Environ Monit Assess 1852:1117–1128

    Article  Google Scholar 

  • Ghosh MK, Majee SR (2000) Assessment of the impact on the air environment due to opencast coal mining: an Indian case study. Atmos Environ 34:2791–2796

    Article  Google Scholar 

  • Ghosh MK, Majee SR (2007) Characteristics of hazardous airborne dust around an Indian coal mining area. Environ Monit Assess 130:17–25

    Article  Google Scholar 

  • Ghosh R (2002) Land use in mining areas of India. Envis Monograph No.9 by CME, ISSN: 0972 4656

  • Giles DM et al (2011) Aerosol properties over the Indo-Gangetic Plain: a mesoscale perspective from the TIGERZ experiment. J Geophys Res 116:D18203. doi:10.1029/2011JD015809

    Article  Google Scholar 

  • Guleria RP, Kuniyal JC, Rawat PS, Thakur HK, Sharma M, Sharma NL, Dhyani PP, Singh M (2012a) Validation of MODIS retrieval aerosol optical depth and an investigation on aerosol transport over Mohal in the northwestern Indian Himalaya. Int J Remote Sens 33(17):5379–5401

  • Jaiprakash P, Singh G, Pal AK (2010) Air pollution dispersion modeling performance for mining complex. Environ Int J Sci Technol 5:205–222

    Google Scholar 

  • Jones T (1993) The role of environmental impact assessment in coal production and utilisation. Nat Resour Forum 17:170–180

    Article  Google Scholar 

  • Kaskaoutis DG, Kharol SK, Sinha PR, Singh RP, Badarinath KVS, Mehdi W, Sharma M (2011) Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmos Meas Technol Discuss 4:5275–5323. doi:10.5194/amtd-4-5275-2011

    Article  Google Scholar 

  • Kaskaoutis DG, Singh RP, Gautam R, Sharma M, Kosmopoulos PG, Tripathi SN (2012a) Variability and trends of aerosol properties over Kanpur northern India using AERONET data (2001–10). Environ Res Lett 7:024003

    Article  Google Scholar 

  • Kaskaoutis DG et al (2012b) Influence of anomalous dry conditions on aerosols over India: transport distribution and properties. J Geophys Res. doi:10.1029/2011JD017314

    Google Scholar 

  • Kaskaoutis DG, Houssos EE, Goto D, Bartzokas A, Nastos PT, Sinha PR, Kharol SK, Kosmopoulos PG, Singh RP, Takemura T (2014) Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Clim Dyn. doi:10.1007/s00382-014-2055-2

    Google Scholar 

  • Kharol SK, Badarinath KVS, Sharma AR, Kaskaoutis DG, Kambezidis HD (2011) Multiyear analysis of Terra/Aqua MODIS aerosol optical depth and ground observations over tropical urban region of Hyderabad India. Atmos Environ 45:1532–1542

    Article  CAS  Google Scholar 

  • Kumar U (1996) In: Bose AK (Ed) Coal scenario by 2001, Proceedings of international Conference on Business and Investment Opportunities in Mining Industries, Oxford and IBH, New Delhi, 183–194

  • Kumar CSS, Kumar P, Deshpande VP, Badrinath SD (1994) In: Khuntia GS (Ed) Fugitive dust emission estimation and validation of air quality model in bauxite mines. Proceedings of International Conference on Environmental Issues in Minerals and Energy Industry, IME Publications, New Delhi, India, 77–81

  • Kumar TK, Gadhavi H, Jayaraman A, Sai Suman MN, RaoS VB (2013) Temporal and spatial variability of aerosol optical depth over South India as inferred from MODIS. J Atmos Solar-Terr Phys 94:71–80

    Article  Google Scholar 

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420. doi:10.5194/acp-10-10399-2010

    Article  CAS  Google Scholar 

  • Liang WM, Wei HY, Kuo HW (2009) Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environ Res 109(1):51–58

    Article  CAS  Google Scholar 

  • Lal B, Tripathy SS (2012) Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos Pollut Res 3:211–218

    Article  CAS  Google Scholar 

  • Lodhi NK, Beegum S, Singh SN, Kumar K (2013) Aerosol climatology at Delhi in the western Indo-Gangetic Plain: microphysics long-term trends and source strengths. J Geophys Res Atmos 118:1361–1375. doi:10.1002/jgrd50165

    Article  Google Scholar 

  • Menon R, Raja P, Malpe D, Subramaniyam KSV, Balaram V (2011) Radioelemental characterization of fly ash from Chandrapur Super Thermal Power Station Maharashtra India. Curr Sci 100 (11)

  • Mills TC (1990) Time series techniques for economists. Cambridge University Press, Cambridge

    Google Scholar 

  • Mishra RK, Pandey J, Chaudhary SK, Khalkho A, Singh VK (2012) Estimation of air pollution concentration over Jharia coalfield based on satellite imagery of atmospheric aerosol. Int J Geomatics Geosci 2(3)

  • Misra A, Jayaraman A, Ganguly D (2008) Validation of MODIS derived aerosol optical depth over Western India. J Geophys Res 113:D04203. doi:10.1029/2007JD009075

    Google Scholar 

  • Moorthy KK, Suresh Babu S, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian region. Geophys Res Lett. doi:10.1002/GRL50165

    Google Scholar 

  • Mukhopadhyay S, Pal S, Mukherjee AK, Ghosh AR (2010) Ambient air quality in opencast coal mining area of Bankola area (under eastern coalfield Ltd) of Asansol-Raniganj regions. Ecoscan 4(1):19–24

    CAS  Google Scholar 

  • Nanda SN, & Tiwary SN (2001) Ind J Environ Protect 21,193

  • Parmar KS, Bhardwaj R (2013a) Water quality index and fractal dimension analysis of water parameters. Int J Environ Sci Technol 10:151–164. doi:10.1007/s13762-012-0086-y

    Article  CAS  Google Scholar 

  • Parmar KS, Bhardwaj R (2013b) Wavelet and statistical analysis of river water quality parameters. Appl Math Comput 219:10172–10182

    Article  Google Scholar 

  • Percival DB, Walden AT (1993) Spectral analysis for physical applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Portnov BA, Dubnov J, Barchana, M (2009) Studying the association between air pollution and lung cancer incidence in a large metropolitan area using a kernel density function. Socio Econ. Plan. Sci 43:141–150

  • Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons, 2000–2005. Remote Sens Environ 107:109–119

    Article  Google Scholar 

  • Ramachandran S, Kedia S (2012) Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs rural) and seasonal variations. Environ Sci Pollut Res 19:2159–2171. doi:10.1007/s11356-011-0715-x

    Article  CAS  Google Scholar 

  • Ramachandran S, Kedia S, Srivastava R (2012) Aerosol optical depth trends over different regions of India. Atmos Environ 49:338–347

    Article  CAS  Google Scholar 

  • Rangarajan G (1997) A climate predictability index and its applications. Geophys Res Lett 24(10):1239–1242

    Article  Google Scholar 

  • Reddy GS, Ruj B (2003) Ambient air quality status in Raniganj-Asansol area India. Environ Monit Assess 189:153–163

    Article  Google Scholar 

  • Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanré D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H, Holben BN (2008) Global aerosol climatology from MODIS satellite sensors. J Geophys Res 113:D14S07. doi:10.1029/2007JD009661

    Article  Google Scholar 

  • Saha A, Moorthy KK, Niranjan K (2005) Interannual variations of aerosol optical depth over coastal India: relation to synoptic meteorology. J Appl Meteorol 44(7):1066–1077

    Article  Google Scholar 

  • Singh G (2006) An index to measure depreciation in air quality in some coal mining area of Korba industrial belt of Chhattisgarh, India. Environ Monit Assess 122:309–317

    Article  CAS  Google Scholar 

  • Singh G, Puri SK (2004) Air quality assessment in Korba coal field. Indian J Air Pollut Control 4(2):31–41

    Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben BN (2004) Variability of aerosol parameters over Kanpur northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966

    Google Scholar 

  • Soltani S, Modarres R, Eslamian SS (2007) The use of time series modeling for the determination of rainfall climates of Iran. Int J Climatol 27:819–829

    Article  Google Scholar 

  • Tiwary RK, & Dhar BB (2006) Environmental pollution from coal mining activities in Damodar River Basin, India. Mines Water and the Environment. International Mine Water Association, 2006. www.imwa.info

  • Trivedi R, Chakraborty MK, Tewary BK (2009) Dust dispersion modeling using fugitive dust model at an open cast project of Western Coalfields Limited India. J Sci Ind Res 68:71–78

    CAS  Google Scholar 

  • Trivedi R, Chakraborty MK, Sangode AG, Tewary BK (2010a) A study of air pollution load assessment around open cast coal project in India. Int J E-Politics 30(3):198–206

    CAS  Google Scholar 

  • Trivedi R, Mondal A, Chakraborty MK, Tewary BK (2010b) A statistical analysis of ambient air quality around opencast coal projects in Wardha Valley coalfields western coal fields limited India. Indian J Environ Protect 30(12):969–977

    CAS  Google Scholar 

  • Wheeler AJ, Williams I, Beaumont RA, Manilton RS (2000) Characterisation of particulate matter sampled during a study of children’s personal exposure to air borne particulate matter in a UK urban environment. Environ Monit Assess 65:69–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the MODIS science data teams for processing the data via Giovanni website (http://.gsfc.nasa.gov/). One of the authors (KS) is grateful to the Director, CSIR-NPL. The authors are also thankful to the two anonymous reviewers for their valuable suggestions and comments in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Soni.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, K., Parmar, K.S. & Kapoor, S. Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environ Sci Pollut Res 22, 3652–3671 (2015). https://doi.org/10.1007/s11356-014-3561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3561-9

Keywords

Navigation