Skip to main content
Log in

Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol–gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry. The nanocomposites existed in the anatase phase of TiO2 with no peak assigned to Mn on the diffractogram. The photocatalytic activities of the materials were evaluated by monitoring degradation of a model dye (methylene blue (MB)) in presence of visible light and ozone. The nanocomposite synthesized under neutral condition (pH = 7) exhibited the best photocatalytic activity resulting from its relatively smaller crystal size (5.98 nm) and larger pore volume (0.30 cm3/g). One percentage of weight Mn/TiO2 showed 100 % decolouration of MB in the presence of O3 after 100 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  • Aguinaco A, Beltran FJ, Garcia-Araya JF, Oropesa A (2012) Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chem Eng J 189:275–282. doi:10.1016/j.cej.2012.02.072

    Article  Google Scholar 

  • Aman N, Satapathy PK, Mishra T, Mahato M, Das NN (2012) Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst. Mater Res Bull 47(2):179–183. doi:10.1016/j.materresbull.2011.11.049

    Article  CAS  Google Scholar 

  • Bao N, Wei Z, Ma Z, Liu F, Yin G (2010) Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties. J Hazard Mater 174(1–3):129–136. doi:10.1016/j.jhazmat.2009.09.026

    Article  CAS  Google Scholar 

  • Bégin-Colin S, Gadalla A, Le Caër GR, Humbert O, Thomas F, Barres O, Gilliot P (2009) On the origin of the decay of the photocatalytic activity of tio2 powders ground at high energy. J Phys Chem C 113(38):16589–16602. doi:10.1021/jp900108a

    Article  Google Scholar 

  • Binas VD, Sambani K, Maggos T, Katsanaki A, Kiriakidis G (2012) Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl Catalysis B-Environ 113:79–86. doi:10.1016/j.apcatb.2011.11.021

    Article  Google Scholar 

  • Burns A, Hayes G, Li W, Hirvonen J, Demaree JD, Shah SI (2004) Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures. Mater Sci Eng B-Solid State Mater Adv Technol 111(2–3):150–155. doi:10.1016/j.mseb.2004.04.008

    Article  Google Scholar 

  • Chauhan R, Kumar A, Chaudhary RP (2012) Structural and photocatalytic studies of Mn doped TiO2 nanoparticles. Spectrochimica Acta Part a-Mole Biomol Spectrosc 98:256–264. doi:10.1016/j.saa.2012.08.009

    Article  CAS  Google Scholar 

  • Chen F, Xie YD, Zhao JC, Lu GX (2001) Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 44(5):1159–1168. doi:10.1016/s0045-6535(00)00277-0

    Article  CAS  Google Scholar 

  • Crepaldi EL, Soler-Illia GJDAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125(32):9770–9786. doi:10.1021/ja030070g

    Article  CAS  Google Scholar 

  • Dirk E, Michael R, Andreas S, Juergen A (2010) Water vapour sorption on hydrophilic and hydrophobic materials. Appl Surf Sci 256(17): 5482–5485. doi:10.1016/j.apsusc.2009.12.144

  • Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Robichaud J (2002) Study of anatase to rutile phase transition in nanocrystalline titania films. J Sol-Gel Sci Technol 24(3):255–264. doi:10.1023/a:1015357313003

    Article  CAS  Google Scholar 

  • Gunay A, Ersoy B, Dikmen S, Evcin A (2013) Investigation of equilibrium, kinetic, thermodynamic and mechanism of Basic Blue 16 adsorption by montmorillonitic clay. Adsorpt-J Int Adsorpt Soc 19(2–4):757–768. doi:10.1007/s10450-013-9509-4

    Article  Google Scholar 

  • Hou YD, Wang XC, Wu L, Chen XF, Ding ZX, Wang XX, Fu XZ (2008) N-doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. Chemosphere 72(3):414–421. doi:10.1016/j.chemosphere.2008.02.035

    Article  CAS  Google Scholar 

  • Huang, W. P., Tang, X. H., Wang, Y. Q., Koltypin, Y., & Gedanken, A. (2000). Selective synthesis of anatase and rutile via ultrasound irradiation. Chem Commun (15), 1415–1416. doi: 10.1039/b003349i

  • Ikhsan J, Wells JD, Johnson BB, Angove MJ (2004) The effect of aspartic acid on the binding of transition metals to kaolinite. J Colloid Interface Sci 273(1):6–13. doi:10.1016/j.jcis.2004.01.060

    Article  CAS  Google Scholar 

  • Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21(32):11686–11707. doi:10.1039/C1JM10407A

    Article  CAS  Google Scholar 

  • Jiang B, Zheng J, Liu Q, Wu M (2012) Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system. Chem Eng J 204:32–39. doi:10.1016/j.cej.2012.07.088

    Article  Google Scholar 

  • Kanazawa, S., Kawano, H., Watanabe, S., Furuki, T., Akamine, S., Ichiki, R., . . . Mizeraczyk, J. (2011). Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci & Technol, 20(3). doi: 10.1088/0963-0252/20/3/034010

  • Kasprzyk-Hordern B, Ziolek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catalysis B-Environ 46(4):639–669. doi:10.1016/s0926-3373(03)00326-6

    Article  CAS  Google Scholar 

  • Leghari SAK, Sajjad S, Chen F, Zhang J (2011) WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem Eng J 166(3):906–915. doi:10.1016/j.cej.2010.11.065

    Article  CAS  Google Scholar 

  • Li H, Wang D, Fan H, Jiang T, Li X, Xie T (2011) Synthesis of ordered multivalent Mn-TiO2 Nanospheres with tunable size: a high performance visible-light photocatalyst. Nano Res 4(5):460–469. doi:10.1007/s12274-011-0102-4

    Article  CAS  Google Scholar 

  • Luo HM, Wang C, Yan YS (2003) Synthesis of mesostructured titania with controlled crystalline framework. Chem Mater 15(20):3841–3846. doi:10.1021/cm0302882

    Article  CAS  Google Scholar 

  • Maddila S, Dasireddy DBC, Oseghe EO, Jonnalagadda SB (2013) Ozone initiated dechlorination and degradation of trichloropehnol using Ce-Zr loaded oxides as catalysts. Appl Catal B Environ 142–143, 129–141. doi:10.1016/j.apcatb.2013.05.012

  • Mahmoodi NM (2011) Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279(1–3):332–337. doi:10.1016/j.desal.2011.06.027

    Article  CAS  Google Scholar 

  • Meng Z-D, Zhu L, Choi J-G, Park C-Y, & Oh W-C (2011). Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Research Letters, 6. doi: 10.1186/1556-276x-6-459

  • Mohamed MM, Othman I, Mohamed RM (2007) Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. J Photochem and Photobiol a-Chem 191(2–3):153–161. doi:10.1016/j.jphotochem.2007.04.017

    Article  CAS  Google Scholar 

  • Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H (2005) Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B 109(35):16579–16586. doi:10.1021/jp051339g

    Article  CAS  Google Scholar 

  • Nilsson E, Sakamoto Y, Palmqvist AEC (2011) Low-Temperature synthesis and HRTEM Analysis of ordered mesoporous anatase with tunable crystallite size and pore shape. Chem Mater 23(11):2781–2785. doi:10.1021/cm103600q

    Article  CAS  Google Scholar 

  • Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276(1–3):13–27. doi:10.1016/j.desal.2011.03.071

    Article  CAS  Google Scholar 

  • Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157(2–3):373–378. doi:10.1016/j.cej.2009.11.017

    Article  CAS  Google Scholar 

  • Rivas J, Encinas A, Beltran F, Graham N (2011) Application of advanced oxidation processes to doxycycline and norfloxacin removal from water. J Environ Sci and Health Part a-Toxic/Hazardous Substances & Environ Eng 46(9):944–951. doi:10.1080/10934529.2011.586249

    Article  CAS  Google Scholar 

  • Rodriguez EM, Fernandez G, Alvarez PM, Beltran FJ (2012) TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water. Water Res 46(1):152–166. doi:10.1016/j.watres.2011.10.038

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Song X, Wang Y, Wang K, Xu R (2012) Low-cost carbon nanospheres for efficient removal of organic dyes from aqueous solutions. Ind Eng Chem Res 51(41):13438–13444. doi:10.1021/ie300914h

    Article  CAS  Google Scholar 

  • Su J, Zou XX, Zou YC, Li GD, Wang PP, Chen JS (2013). Porous Titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature. Inorg Chem 59124–5930. doi:10:1021/ic400109j

  • Sun J, Yan X, Lv K, Sun S, Deng K, Du D (2013) Photocatalytic degradation pathway for azo dye in TiO2/UV/O-3 system: Hydroxyl radical versus hole. J Mole Catalysis a-Chem 367:31–37. doi:10.1016/j.molcata.2012.10.020

    Article  CAS  Google Scholar 

  • Wan Y, Zhao (2007) On the Controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. doi:10.1021/cr068020s

    Article  CAS  Google Scholar 

  • Wu Y, Yuan H, Wei G, Zhang S, Li H, Dong W (2013) Photodegradation of 4-tert octylphenol in aqueous solution promoted by Fe(III). Environ Sci Pollut Res 20(1):3–9. doi:10.1007/s11356-012-1039-1

    Article  CAS  Google Scholar 

  • Xu S, Ng J, Zhang X, Bai H, Sun DD (2011) Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloids and Surfaces a-Physicochem and Eng Aspects 379(1–3):169–175. doi:10.1016/j.colsurfa.2010.11.032

    Article  CAS  Google Scholar 

  • Xu Y, Lei B, Guo L, Zhou W, Liu Y (2008) Preparation, characterization and photocatalytic activity of manganese doped TiO(2) immobilized on silica gel. J Hazard Mater 160(1):78–82. doi:10.1016/j.jhazmat.2008.02.086

    Article  CAS  Google Scholar 

  • Xue M, Huang L, Jian-Qiang W, Wang Y, Gao L, Zhu J-H, & Zou Z-G (2008). The direct synthesis of mesoporous structured MnO(2)/TiO(2) nanocomposite: a novel visible-light active photocatalyst with large pore size. Nanotechnology, 19(18). doi: 10.1088/0957-4484/19/18/185604

  • Yu JC, Yu H, Jiang, Zhang (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816. doi:10.1021/cm020027c

    Article  CAS  Google Scholar 

  • Zhan C, Chen F, Dai H, Yang J, Zhong M (2013) Photocatalytic activity of sulfated Mo-doped TiO2@fumed SiO2 composite: A mesoporous structure for methyl orange degradation. Chem Eng J 225:695–703. doi:10.1016/j.cej.2013.03.110

    Article  CAS  Google Scholar 

  • Zou X-X, Li G-D, Guo M-Y, Li X-H, Liu D-P, Su J, Chen J-S (2008) Heterometal Alkoxides as precursors for the preparation of porous Fe- and Mn-TiO2 photocatalysts with high efficiencies. Chem-a Eur J 14(35):11123–11131. doi:10.1002/chem.200801236

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciates the School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban and iThemba LABS, Materials Research Department, South Africa for access to the facilities used for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekanth Babu Jonnalagadda.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oseghe, E.O., Ndungu, P.G. & Jonnalagadda, S.B. Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems. Environ Sci Pollut Res 22, 211–222 (2015). https://doi.org/10.1007/s11356-014-3356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3356-z

Keywords

Navigation