Skip to main content
Log in

The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The tolerance and removal efficiency of Typha domingensis exposed to high concentrations of Cr, Ni, and Zn in single and combined treatments were studied. Sediment and two plants were disposed in each plastic reactor. The treatments were 100 and 500 mg L−1 of Cr, Ni, and Zn (single solutions); 100 mg L−1 Cr + Ni + Zn (multi-metal solutions) and 500 mg L−1 Cr + Ni + Zn (multi-metal solutions); and a control. Even though the concentrations studied were extremely high, simulating an accidental metal dump, the three metals were efficiently removed from water. The highest removal was registered for Cr. The presence of other metals favored Cr and did not favor Ni and Zn removal from water. After 25 days, senescence and chlorosis of plants were observed in Ni and Comb500 treatments, while Cr and Zn only caused growth inhibition. T. domingensis accumulated high metal concentrations in tissues. The roots showed higher metal concentration than submerged parts of leaves. Cr translocation to aerial parts was enhanced by the presence of Ni and Zn. Our results demonstrate that in the case of an accidental dump of high Cr, Ni, and Zn concentrations, a wetland system dominated by T. domingensis is able to retain metals, and the macrophyte is able to tolerate them the time necessary to remove them from water. Thus, the environment will be preserved since the wetland would act as a cushion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (1998) Standard methods for the examination of water and wastewater. Amer. Publ. Health Assoc, N.Y., p 1268

    Google Scholar 

  • Arduini I, Masoni A, Ercoli L (2006) Effects of high chromium applications on Miscanthus during the period of maximum growth. Environ Exp Bot 58:234–243

    Article  CAS  Google Scholar 

  • Bonet A, Poschenrieder C, Barceló J (1991) ChromiumIII-Iron interactions in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. J Plant Nut 14:403–414

    Article  CAS  Google Scholar 

  • Bonilla I (2008) Introducción a la nutrición mineral de las plantas. Los elementos minerales. In: Azcón-Bieto J, Talón M (eds) Vegetal. Fundamentos de fisiología. Mc Graw Hill-UBe, pp 103–121

  • Chandra R, Yadav S (2010) Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecol Eng 36:1277–1284

    Article  Google Scholar 

  • Corradi M, Bianchi A, Albasini A (1993) Chromium toxicity in Salvia sclarea. Effects of hexavalent chromium on seed germination and seedling development. Environ Exp Bot 33(3):405–413

    Article  CAS  Google Scholar 

  • Delgado M, Bigeriego M, Guardiola E (1993) Uptake of Zn, Cr and Cr by water Hyacinths. Wat Res 27(2):269–270

    Article  CAS  Google Scholar 

  • Guo T, Delaune R, Patrick W (1997) The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium and zinc in estuarine sediment. Environ Int 23(3):305–316

    Article  CAS  Google Scholar 

  • Hadad HR, Maine MA, Natale GS, Bonetto C (2007) The effect of nutrient addition on metal tolerance in Salvinia herzogii. Ecol Eng 31(2):122–131

    Article  Google Scholar 

  • Hadad HR, Mufarrege MM, Pinciroli M, Di Luca GA, Maine MA (2010) Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Arch Environ Cont Toxicol 58(3):666–675

    Article  CAS  Google Scholar 

  • Hadad HR, Maine MA, Mufarrege MM, del Sastre MV, Di Luca GA (2011) Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes. J Haz Mat 190:1016–1022

    Article  CAS  Google Scholar 

  • Hechmi N, Aissa NB, Abdenaceur H, Jedidi N (2014) Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environ Sci Pollut Res 21(2):1304–1313

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Lyubenova L, Kuhn AK, Höltkermeier A, Schröder P (2013) Root exudation pattern of Typha latifolia L. plants after copper exposure. Plant Soil. doi: 10.1007/s11104-013-1634-z

  • Maine MA, Duarte M, Suñe N (2001) Cadmium uptake by floating macrophytes. Water Res 35:2629–2634

    Article  CAS  Google Scholar 

  • Maine MA, Suñé NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    Article  CAS  Google Scholar 

  • Maine MA, Suñé N, Hadad RH, Sánchez GC, Bonetto C (2009) Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. J Environ Manag 90:355–363

    Article  CAS  Google Scholar 

  • Maine MA, Hadad HR, Sanchez GC, Mufarrege MM, Di Luca GA, Caffaratti SE, Pedro MC (2013) Sustainability of a constructed wetland faced with a depredation event. J Environ Manag 128:1–6

    Article  CAS  Google Scholar 

  • Maleci L, Bini C, Paolillo A (2001) Chromium (III) uptake by Calendula arvensis L. and related phytotoxicity. Proceedings VI ICOBTE, Guelph. On 384 p

  • Mangabeira PA, Ferreira AS, de Almeida AAF, Fernandes VF, Lucena E, Souza VL, dos Santos Júnior AJ, Oliveira AH, Grenier-Loustalot MF, Barbier F, Silva DC (2011) Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals 24:1017–1026

    Article  CAS  Google Scholar 

  • Manios T, Stentiford E, Millner P (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20:65–74

    Article  Google Scholar 

  • Mench M, Schwitzguébel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Mufarrege MM, Hadad HR, Maine MA (2010) Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Arch Environ Cont Toxicol 58(1):53–61

    Article  CAS  Google Scholar 

  • Mufarrege MM, Di Luca GA, Hadad HR, Maine MA (2011) Adaptability of Typha domingensis to high pH and salinity. Ecotoxicology 20:457–465

    Article  CAS  Google Scholar 

  • Preeti P, Triphati AK (2011) Effect of heavy metals on morphological and biochemical characteristics sof Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci 1(5):1009–1018

    Google Scholar 

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere 61:1204–1214

    Article  CAS  Google Scholar 

  • Sousa AI, Caçador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Suñé N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Poll 145(2):467–473

    Article  Google Scholar 

  • Taylor GJ, Crowder AA (1983) Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture. Can J Bot 61:1825–1830

    Article  CAS  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino A, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56

    Article  CAS  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69

    Article  CAS  Google Scholar 

  • Westlake DF (1974) Macrophytes. In: Vollenweider RA (ed) A manual on methods for measuring primary production in aquatic environments, IBP handbook no. 12, 2nd ed. International biological programme. Blackwell Scientific, Oxford, pp 32–42

    Google Scholar 

Download references

Acknowledgments

The authors thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL)-CAI+D Project, and Agencia de Promoción Científica y Tecnológica for providing funds for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mufarrege.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mufarrege, M.M., Hadad, H.R., Di Luca, G.A. et al. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. Environ Sci Pollut Res 22, 286–292 (2015). https://doi.org/10.1007/s11356-014-3352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3352-3

Keywords

Navigation