Skip to main content
Log in

Wet oxidation of sewage sludge: full-scale experience and process modeling

  • Effective management of sewage sludge
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nowadays, sewage sludge management represents one of the most important issues in wastewater treatment. Within the European project “ROUTES,” wet oxidation (WO) was proposed for sludge minimization. Four different types of sludge were treated in an industrial WO plant: (1) municipal primary sludge (chemical oxygen demand COD: 73.0 g/L; volatile suspended solid VSS: 44.1 g/L); (2) secondary sludge from an industrial wastewater treatment plant (WWTP) without primary sedimentation (COD: 71.8 g/L; VSS: 34.2 g/L); (3) secondary sludge from a mixed municipal and industrial WWTP without primary sedimentation (COD: 61.9 g/L; VSS: 38.7 g/L); and (4) mixed primary (70 %) and secondary (30 %) municipal sludge (COD: 81.2 g/L; VSS: 40.6 g/L). The effect of process parameters (temperature, reaction time, oxygen dosage) on WO performance was investigated. Depending on operating conditions, VSS and COD removal efficiency varied in the range 80–97 % and 43–71 %, respectively. A correlation between process efficiency and the initial VSS/TSS (total suspended solids) ratio was highlighted. Furthermore, a mathematical model of WO process for simulating VSS and COD profiles was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe N, Tang YQ, Iwamura M, Ohta H, Morimura S, Kida K (2011) Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant. Bioresour Technol 102:7641–7644

    Article  CAS  Google Scholar 

  • APAT-IRSA/CNR (2003) Analytical methods for water quality control. APAT Handbooks and Guidelines 29/2003, Rome (in Italian)

  • Baroutian S, Smit AM, Gapes DJ (2013) Relative influence of process variables during non-catalytic wet oxidation of municipal sludge. Bioresour Technol 148:605–610

    Article  CAS  Google Scholar 

  • Bertanza G, Zanaboni S (2011) Wet oxidation of sewage sludge. In: Belgiorno V, Naddeo V, Rizzo L (ed) Water, wastewater and soil treatment by Advanced Oxidation Processes (AOPs), 1st edn. ASTER onlus ed., pp 227–240

  • Chung J, Lee M, Ahn J, Bae W, Lee YW, Shim H (2009) Effect of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation. J Hazard Mater 162:10–16

    Article  CAS  Google Scholar 

  • Collado S, Laca A, Diaz M (2012) Decision criteria for the selection of wet oxidation and conventional biological treatment. J Environ Manag 102:65–70

    Article  CAS  Google Scholar 

  • Debellefontaine H, Foussard JN (2000) Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag 20(1):15–25

    Article  CAS  Google Scholar 

  • Debellefontaine H, Chakchouk M, Foussard JN, Tisso D, Striolo P (1996) Treatment of organic aqueous wastes, wet air oxidation and wet peroxide oxidation. Environ Pollut 92(2):155–164

    Article  CAS  Google Scholar 

  • Debellefontaine H, Crispel S, Reilhac P, Perie F, Foussard JN (1999) Wet air oxidation (WAO) for treatment of industrial wastewater and domestic sludge. Design of bubble column reactors. Chem Eng Sci 54:4953–4959

    Article  CAS  Google Scholar 

  • Deiber G, Foussard JN, Debellefontaine H (1997) Removal of nitrogenous compounds by catalytic wet air oxidation. Kinetic study. Environ Pollut 96(3):311–319

    Article  CAS  Google Scholar 

  • Devlin HR, Harris IJ (1984) Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind Eng Chem Fundam 23:387–392

    Article  CAS  Google Scholar 

  • Duprez D, Delanoe F, Barbier J Jr, Isnard P, Blanchard G (1996) Catalytic oxidation of organic compounds in aqueous media. Catal Today 29:317–322

    Article  CAS  Google Scholar 

  • Foladori P, Andreottola G, Ziglio G (2010) Sludge reduction technologies in wastewater treatment plants. IWA Publishing, London

    Google Scholar 

  • Foussard JN, Debellefontaine H, Besombes VJ (1989) Effective elimination of organic liquid wastes: wet air oxidation. Environ Eng 115:367

    Article  CAS  Google Scholar 

  • Gielen GJH, Love SR, Lei RJ, Gapes DJ, Strong PJ, McGrouther KG, Stuthridge TR (2011) Wet oxidation technology—a potential biosolids management alternative. IPENZ Trans 2

  • Goi D, De Leitenburg C, Trovarelli A, Dolcetti G (2004) Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement. Environ Technol 25(12):1397–1403

    Article  CAS  Google Scholar 

  • Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N (2014) A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 155:289–299

    Article  CAS  Google Scholar 

  • Hung CM, Lou JC, Lin CH (2003) Wet air oxidation of aqueous ammonia solution catalyzed by composite metal oxide. Environ Eng Sci 20(6):547–556

    Article  CAS  Google Scholar 

  • Joglekar HS, Samant SD, Joshi JB (1991) Kinetics of wet oxidation of phenol and substituted phenols. Water Res 25(2):135–145

    Article  CAS  Google Scholar 

  • Kawabata N, Urano H (1985) Improvement of biodegradability of organic compounds by wet oxidation. Mem Fac Eng Des Kyoto Inst Technol Ser Sci Technol 34:64–71

    CAS  Google Scholar 

  • Khan Y, Anderson GK, Elliott DJ (1999) Wet oxidation of activated sludge. Water Res 33(7):1681–1687

    Article  CAS  Google Scholar 

  • Larachi F, Iliuta I, Belkacemi K (2001) Catalytic wet air oxidation with a deactivating catalyst analysis of fixed and sparged three-phase reactors. Catal Today 64(3–4):309–320

    Article  CAS  Google Scholar 

  • Lendormi T, Prevot C, Doppenberg F, Foussard J, Debellefontaine H (2001) Subcritical wet oxidation of municipal sewage sludge: comparison of batch and continuous experiments. Water Sci Technol 44(5):161–169

    CAS  Google Scholar 

  • Li L, Chen P, Glkoyna EF (1991) Generalized kinetic model for wet oxidation of organic compounds. AlChE J 37(11):1687–1697

    Article  CAS  Google Scholar 

  • Lissens G, Thomsen AB, De Baere L, Verstraete W, Ahring BK (2004) Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environ Sci Technol 38:3418--3424

  • Liu Y, Tay JH (2001) Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol Adv 19:97–107

    Article  Google Scholar 

  • Lopes RJG, Silva AMT, Quinta-Ferreira RM (2007) Screening of catalysts and effect of temperature for kinetic degradation studies of aromatic compounds during wet oxidation. Appl Catal B 73(1–2):193–202

    Article  CAS  Google Scholar 

  • Lopez Bernal J, Portela JR, Nebot E, Martınez de la Ossa E (1999) Wet air oxidation of oily wastes generated aboard ships: kinetic modeling. J Hazard Mater 67(1):61–73

    Article  CAS  Google Scholar 

  • Luck F (1996) A review of industrial catalytic wet air oxidation processes. Catal Today 27(1–2):195–202

    Article  CAS  Google Scholar 

  • Luck F (1999) Wet air oxidation, past, present and future. Catal Today 53:81–91

    Article  CAS  Google Scholar 

  • Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34:2–48

    Article  CAS  Google Scholar 

  • Mucha J, Zarzycki R (2008) Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge. Water Res 42:3025–3032

    Article  CAS  Google Scholar 

  • Pérez-Elvira SI, Nieto D, Fdz-Polanco F (2006) Sludge minimisation technologies. Environ Sci Biotechnol 5:375–398

    Article  Google Scholar 

  • Ploos van Amstel JJA, Rietema K (1973) Wet-air oxidation of sewage sludge part II: the oxidation of real sludges. Chem Ing Tech 45:1205–1211

    Article  Google Scholar 

  • Quintanilla A, Casas JA, Zazo JA, Mohedano AF, Rodríguez JJ (2006) Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Appl Catal B Environ 62:115–120

    Article  CAS  Google Scholar 

  • Roy S, Vashishtha M, Saroha AK (2010) Catalytic wet air oxidation of oxalic acid using platinum catalyst in bubble column reactor: a review. J Eng Sci Technol Rev 3(1):95–107

    CAS  Google Scholar 

  • Sanchez-Oneto J, Portela JR, Nebot E, Martinez de la Ossa EJ (2004) Wet air oxidation of long-chain carboxylic acids. Chem Eng J 100(1–3):43–50

    Article  CAS  Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151

    Article  CAS  Google Scholar 

  • Seiler GS (1987) Twenty five years of sludge management by wet oxidation. Sludge Manag Ser 17:100–105

    CAS  Google Scholar 

  • Shanableh A (2000) Production of useful organic matter from sludge hydrothermal treatment. Water Res 34(3):945--951

  • Slavik E, Galessi R, Salvetti R, Bertanza G (2013) Experiences of sludge treatment by wet oxidation. In: Mininni G (ed) Effective sewage sludge management—minimization, recycling of materials, enhanced stabilization, disposal after recovery, 1st edn., CNR Quaderni de “La ricerca scientifica” n. 120, Rome, pp.111-130

  • Strehlenert RW (1911) Swed Patent 34:941

    Google Scholar 

  • Strong PJ, McDonald B, Gapes DJ (2011) Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour Technol 102(9):5520–5527

    Article  CAS  Google Scholar 

  • Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Top Catal 33(1–4):3–50

    Article  Google Scholar 

  • Sung-Chul K, Dong-Keun L (2006) Catalytic wet peroxide oxidation of dyehouse effluents with Cu/Al2O3 and copper plate. Stud Surf Sci Catal 159:393–396

    Article  Google Scholar 

  • Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I-T, Rajesh Banu J (2014) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21:1065–1074

    Article  CAS  Google Scholar 

  • Ploos van Amstel JJAP (1971) The oxidation of sewage sludge in the liquid water phase at elevated temperatures and pressures (wet-air oxidation). PhD thesis, Eindhoven University of Technology, Netherlands

  • Veera Lakshmi M, Merrylin J, Kavitha S, Adish Kumar S, Rajesh Banu J, Yeom I-T (2014) Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains. Environ Sci Pollut Res 21:2733–2743

    Article  Google Scholar 

  • Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37(18):4453–4467

    Article  CAS  Google Scholar 

  • Yang X, Wang X, Wang L (2010) Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process. Bioresour Technol 101:2580–2584

    Article  CAS  Google Scholar 

  • Zerva C, Peschos Z, Poulopoulos SG, Philippopoulos CJ (2003) Treatment of industrial oily wastewaters by wet oxidation. J Hazard Mater 97:257–265

    Article  CAS  Google Scholar 

  • Zhang Q, Chuang KT (1999) Lumped kinetic model for catalytic wet oxidation of organic compound in industrial wastewater. AIChE J 45(1):145–150

    Article  CAS  Google Scholar 

  • Zimmermann FJ (1958) New waste disposal process. Chem Eng 25:117–120

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Seventh Programme for research, technological development, and demonstration under grant agreement no. 265156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bertanza.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertanza, G., Galessi, R., Menoni, L. et al. Wet oxidation of sewage sludge: full-scale experience and process modeling. Environ Sci Pollut Res 22, 7306–7316 (2015). https://doi.org/10.1007/s11356-014-3144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3144-9

Keywords

Navigation