Skip to main content
Log in

Abstract

The treatment and disposal of excess sludge represents a bottleneck of wastewater treatment plants all over the world, due to environmental, economic, social and legal factors. There is therefore a growing interest in developing technologies to reduce the wastewater sludge generation. The goal of this paper is to present the state-of-the-art of current minimisation techniques for reducing sludge production in biological wastewater treatment processes. An overview of the main technologies is given considering three different strategies: The first option is to reduce the production of sludge by introducing in the wastewater treatment stage additional stages with a lower cellular yield coefficient compared to the one corresponding to the activated sludge process (lysis-cryptic growth, uncoupling and maintenance metabolism, predation on bacteria, anaerobic treatment). The second choice is to act on the sludge stage. As anaerobic digestion is the main process in sewage sludge treatment for reducing and stabilising the organic solids, two possibilities can be considered: introducing a pre-treatment process before the anaerobic reaction (physical, chemical or biological pre-treatments), or modifying the digestion configuration (two-stage and temperature-phased anaerobic digestion, anoxic gas flotation). And, finally, the last minimisation strategy is the removal of the sludge generated in the activated sludge plant (incineration, gasification, pyrolysis, wet air oxidation, supercritical water oxidation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABR:

anaerobic baffled reactors

AGF:

anoxic gas flotation

ANANOX:

anaerobic anoxic oxic

COD:

chemical oxygen demand

DO:

dissolved oxygen

DS:

dry solids

EGSB:

expanded granular sludge bed

EU:

European Union

HRT:

hydraulic residence time

MLSS (MLVSS):

mixed-liquor (volatile) suspended solids

OSA:

oxic settling anaerobic

SCWO:

supercritical water oxidation

SRT:

solids retention time

SS:

suspended solids

SVI:

sludge volumetric index

THM:

trihalomethanes

TOC:

total organic carbon

TS:

total solids

UASB:

upflow anaerobic sludge blanket

VS (VSS):

volatile (suspended) solids

WAO:

wet air oxidation

WWTP:

wastewater treatment plant

References

  • Abbassi B, Dusllstein S and Räbiger N (1999). Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: Experimental and theoretical approach. Wat. Res. 34(1): 139–146

    Article  Google Scholar 

  • Ahn KH, Park KY, Mueng SK, Hwang JH, Lee JW, Song KG and Choi S (2002). Ozonation of wastewater and ozonation for recycling. Water Sci. Technol. 46(10): 71–77

    CAS  Google Scholar 

  • Alsop GM and Conway RA (1982). Improved thermal sludge conditioning by treatment with acids and bases. J. Wat. Poll. Contr. 3: 233–241

    Google Scholar 

  • Anon (2000) Working document on Sludge. 3’rd Draft. EU-Commission, Brussels, 27 April, 2000

  • Baier U & Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated biosolids. IAQW International Conference on waste water sludge, Cestochowa, Poland, Part 1 (pp 106–112)

  • Böhler M & Siegrist H (2003) Partial ozonation of activated sludge to reduce excess sludge, improve denitrification and control scumming and bulking. Proceedings IWA Specialised Conference BIOSOLIDS 2003: Wastewater as a resource. Throndheim, Norway (pp 23–25) June, 2003

  • Boon AG and Burges DR (1974). Treatment of crude sewage in two high-rate activated sludge plants operated in series. Water Poll. Control 74: 382

    Google Scholar 

  • Bougrier C, Carrère H, Battimelli A & Delgenès JP (2004) Effects of various pre-treaments on waste activated sludge in order to improve matter solubilisation and anaerobic digestion. Proceedings, 10th World Congress Montréal, Canada

  • Brunner CR (1991). Biological sludge incineration. Waste Manage. 11(3): 155–162

    Article  CAS  Google Scholar 

  • Burke DA (1997) Anaerobic digestion of sewage sludge using anoxic gas flotation. 8th international Conference on Anaerobic Digestion, Sendai, Japan

  • Camacho P, Déléris S, Geaugey V, Paul E and Ginestet P (2002). A comparative study between mechanical, thermal and oxidative disintegration technique of wasted activated sludge. Water Sci. Technol. 46(10): 79–87

    CAS  Google Scholar 

  • Canales A, Pareilleux A, Rolls JL, Goma G and Huyard A (1994). Decreased sludge production strategy for domestic wastewater treatment. Water Sci. Technol. 30: 96–106

    Google Scholar 

  • Carballa M, Omil F & Lema M (2004) Improvement of anaerobic digestion operation and digested sludge characteristics using a chemical and thermal pre-treatment. Proceedings, 10th World Congress Montréal, Canada

  • Cartmell E, Clay S, Smith R & Withey S (2004) Application of mechanical pre-treatments for improving the digestibility of waste activated sludge. Proceedings, 10th World Congress Montréal, Canada

  • Cassidi S (1998). Recovery of valuable products from municipal wastewater sludge. In: Hahn, HH, Hoffmann, E and Odegaard, H (eds) Chemical Water and Wastewater Treatment, pp 325–340. Springer, Verlag Heidelberg

    Google Scholar 

  • Cech JS, Hartman P and Macek M (1994). Bacteria and protozoa population dynamics in biological phosphate removal systems. Water Sci. Technol. 19(7): 109–117

    Google Scholar 

  • Chang J, Chudoba P and Capdeville B (1993). Determination of the maintenance requirement of activated sludge. Water Sci. Technol. 28: 139–142

    CAS  Google Scholar 

  • Chen GH, An KJ, Saby S, Brois E and Djafer M (2003). Possible cause of excess reduction in an oxic-settling-anaerobic activated sludge process (OSA process). Water. Res. 37(16): 3855–3866

    Article  CAS  Google Scholar 

  • Chen GH, Mo HK and Liu Y (2002). Utilisation of metabolic uncoupler 3,3′,4′,5-tetrachlorosalicylanilide (TCS) to reduce sludge growth in activated sludge culture. Water Res. 36(8): 2277–2283

    Article  Google Scholar 

  • Chen GH, Mo HK, Saby S, Yip WK and Liu Y (2000). Minimization of activated sludge production by chemically stimulated energy spilling. Water Sci. Technol. 42(12): 189–200

    CAS  Google Scholar 

  • Chen GH, Saby S, Djaer M and Mo HK (2001). New approaches to minimize excess sludge in activated sludge systems. Water Sci. Technol. 44(10): 203–208

    CAS  Google Scholar 

  • Chen GH, Yip WK, Mo HK and Liu Y (2001). Effect of sludge fasting/feasting on growth of activated sludge cultures. Wat. Res. 35(4): 1029–1037

    Article  CAS  Google Scholar 

  • Chiu YC, Chang CN, Lin LG and Huang SJ (1997). Alkaline and ultrasonic pre-treatment of sludge before anaerobic digestion. Water Sci. Technol. 36(11): 155–162

    Article  CAS  Google Scholar 

  • Chu CP, Feng WH, Chang BW, Chou CH and Lee DJ (1999). Reduction in microbial density level through freezing and thawing. Wat. Res. 33: 3532–3535

    Article  CAS  Google Scholar 

  • Chudoba B, Morel A and Capdeville B (1992b). The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system. Environ. Technol. 13: 761–770

    CAS  Google Scholar 

  • Chudoba P & Capdeville B (1991) A possible way towards reduction of waste sludge production. Sixth IAWPCR Conference on Design and Operation of Large Wastewater Treatment Plants. Prague

  • Chudoba P, Chudoba J and Capdeville B (1992a). The aspect of energetic uncoupling of microbial growth in the activated sludge process: OSA system. Water Sci. Technol. 26(9–11): 2477–2480

    CAS  Google Scholar 

  • Chudoba P (1991) Etude et intérêt du découplage énergetique dans les processus d’epuration des eaux par voie biologique procédé OSA. Ph.D. thesis, Inst. Natl. des Sci. Appl., Toulouse, France

  • Churchouse S & Wildgoose D (1999) Membrane bioreactor hit the big time – from lab to full-scale application. The 2nd Symposium on Membrane Bioreactors for Wastewater Treatment, 2 June 1999, Cranfield university, UK

  • Clark P (1998) Ultrasound in sludge processing: The technology of the future? Innovations 200 Conference, Cambridge

  • Clark PB and Nujjoo I (2000). Ultrasonic sludge pre-treatment for enhanced sludge digestion. Water Environ. Man. 14(1): 66–71

    CAS  Google Scholar 

  • Copp JB and Dold PL (1998). Comparing sludge production under aerobic and anoxic conditions. Water Sci. Technol. 38: 285–294

    Article  CAS  Google Scholar 

  • Dangfran Ky, Mullar JF & Mayrose D (2000) A comparison of fluid bed and multiple hearth incineration. Water Environment Federation Biosolids Specialty Conference Proceedings, Boston MA, Session 7

  • De Silva V & Nickel K (2004) Application of ultrasound technology for anaerobic digestion. Proceedings, 10th World Congress Montréal, Canada

  • Déléris S, Geaugey V, Camacho P, Debellefontaine H and Paul E (2002). Minimization of sludge production in biological processes: an alternative solution for the problem of sludge disposal. Water Sci. Technol. 46(10): 63–70

    Google Scholar 

  • Déléris S, Paul E, Audic JM, Roustan M and Debellefontaine H (2000). Effect of ozonation on activated sludge solubilization and mineralization. Ozone Sci. Eng. 22(5): 473–487

    Article  Google Scholar 

  • Djafer M, Luck F, Rose JP & Creenot D (2000) Transforming sludge into a recyclable and valuable carbon source by wet air oxidation. Water and Science Technology, Proceedings Sludge Management for the 21st century, IWA, vol. 41 (8): 77–83

  • Dohányos M, Zábranská J and Jenícek P (1997). Enhancement of sludge anaerobic digestion by using of a special thickening centrifuge. Water Sci. Technol. 36(11): 145–153

    Article  Google Scholar 

  • Eastman JA and Ferguson JF (1981). Solubilization of particulate organic carbon during the acid stage of anaerobic digestion. J. WPCF 53(3): 352–366

    CAS  Google Scholar 

  • Eddings EG, Lighty JS and Kozinski JA (1994). Determination of metal behaviour during solids incineration. Combust. Sci. Technol. 85: 375–390

    Google Scholar 

  • Egemen E, Corpening J and Nirmalakhandan N (2001). Evaluation of an ozonation system for reduced waste sludge generation. Water Sci. Technol. 44(2–3): 445–452

    CAS  Google Scholar 

  • Egemen E, Corpening J, Padilla J, Brennan R and Nirmalakhandan N (1999). Evaluation of ozonation and cryptic growth for biosolids management in wastewater treatment. Water Sci. Technol. 39(10–11): 155–158

    Article  CAS  Google Scholar 

  • Eliasson G, Tykesson E, Jansen JLaC & Hansen B (2000) Utilisation of fractions of digester sludge after thermal hydrolysis. In: Hahn HH, Hoffmann E & Odegaard H (Eds), Chemical Water and Wastewater Treatment VI, Springer Verlag Heidelberg (pp 339–345)

  • Etzel JE, Born GS, Stein J, Helbing TJ and Baney G (1969). Sewage sludge conditioning and disinfection by gamma irradiation. Am J Public Health 59: 2067–3076

    CAS  Google Scholar 

  • Fdz-Polanco F, Martín MA, Pérez SI, Rincón D & Fdz-Polanco M (2005) Sustainability study for aerobic and anaerobic alternatives in municipal and industrial wastewater treatment. VII Latin American Workshop and Symposium on Anaerobic Digestion. Punta del Este, Uruguay (pp 2–5, October 2005)

  • Fdz-Polanco F, Real FJ and García Encina PA (1994). Behaviour of an anaerobic/aerobic pilot scale fluidised bed for simultaneous removal of carbon and nitrogen. Water Sci. Technol. 29(10–11): 339–346

    Google Scholar 

  • Garuti G, Dohanyos M and Tilche A (1992a). Anaerobic–Aerobic combined process for the treatment of sewage wit nutrient removal: the ANANOX process. Water Sci. Technol. 25(7): 383–394

    CAS  Google Scholar 

  • Garuti G, Dohanyos M and Tilche A (1992b). Anaerobic–aerobic wastewater treatment system suitable for variable population in coastal areas: the ANANOX process. Water Sci. Technol. 25(12): 185–195

    CAS  Google Scholar 

  • Gaudy AF and Gaudy ET (1980). Microbiology for Environmental Scientists and Engineers. McGraw-Hill, New York

    Google Scholar 

  • Ghiglizza R, Lodi A, Converti A, Nicolella C and Rovarti M (1996). Influence of the ratio of the initial substrate concentration to biomass concentration on the performance of a sequencing batch reactor. Bioprocess Eng. 14: 131–137

    Google Scholar 

  • Ghosh S & Kensuke Fenkushi (1999) Pilot scale treatment of high strength wastes by bi-phasic fermentation. Proceedings WEF/AWWA Joint Residuals and Biosolids Management Conference, Charlotte, NC

  • Ghyooy W and Verstraete W (2000). Reduced sludge production in a two-stage membrane-assisted bioreactor. Water Res. 34: 205–215

    Article  Google Scholar 

  • Gloyna E (1998) Supercritical Water Oxidation – An effective wastewater and sludge treatment technology. Continuing Engineering Studies, College of Engineering, University of Texas at Austin, February

  • Guibelin E (2002). Sustainability of thermal oxidation processes: Strengths for the new millennium. Water Sci. Technol. 46(10): 259–267

    CAS  Google Scholar 

  • Hasegawa S, Shiota N, Katsura K and Akashi A (2000). Solubilisation of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Sci. Technol. 41(3): 163–169

    CAS  Google Scholar 

  • Haug RT, LeBrun TJ and Tortorici LD (1983). Thermal pre-treatment of sludges – a field demonstration. JPWCF 55(1): 23–34

    CAS  Google Scholar 

  • Herbert D, Elsworth R and Telling RC (1956). The continuous culture of bacteria: a theoretical and experimental study. J.␣Gen. Microbiol. 114: 601

    Article  Google Scholar 

  • Hiraoka M, Takeda N, Sakai S and Tasuda A (1984). Highly efficient anaerobic digestion with thermal pre-treatment. Water Sci. Technol. 17: 529–539

    Google Scholar 

  • Hogan FM, Mormede S, Clark PB & Crane MJ (2004) Enhanced anaerobic digestion using ultrasound. Proceedings, 10th World Congress Montréal, Canada

  • Holzer K & Horak O (1999) Behandlung von Problemabwässem und Klärschlamm en mit dem BAYER-LEPROX-Verfahrew. Pre-prints 4. GVC-Kongress Verfahrenstechnik der Abwasser- und Schlammbehandlung, 6–8 September, 1999, Bremen, Band 1: 177–191

  • Kamiya T and Hirotsuki J (1998). New combined system of biological process and intermittent ozonation for advanced wastewater treatment. Water Sci. Technol. 38(8–9): 145–153

    Article  CAS  Google Scholar 

  • Karlsson I. (2001) Full scale plant recovering iron phosphate from sewage at Helsingborg, Sweden. Proc. 2’nd Int.Conf. on Recovery of Phosphates from Sewage and Animal Wastes, CEEP, Holland, 12–14 March 2001

  • Kepp U, Machenbach I, Weisz N and Solheim OE (1999). Enhanced stabilisation of sewage sludge through thermal hydrolysis – 3 years of experience with full scale plants. Water Sci. Technol. 42(9): 89–96

    Google Scholar 

  • Kepp U & Solheim OE (2001) Meeting increased demands on sludge quality – experience with full scale plant for thermal disintegration. Proceedings. 9th World Congress, Anaerobic Conversion for Sustainability

  • Kunz P & Wagner S (1994) Ergebnisse und Perspektiven aus Untersuchungen zur Klärschlammdesintegration, awt Abwassertechnik, 44(2): 33–40

  • Lee NM and Welander T (1996a). Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem. Water Res. 30(8): 1781–1790

    Article  CAS  Google Scholar 

  • Lee NM and Welander T (1996b). Use of protozoa and metazoan for decreasing sludge production in aerobic wastewater treatment. Biotechnol. Lett. 18(4): 429–434

    Article  CAS  Google Scholar 

  • Lehne G, Müller A and Schwedes J (2001). Mechanical disintegration of sewage sludge. Water. Sci. Technol. 43(1): 19–26

    CAS  Google Scholar 

  • Lettinga G and Hulshoff Pol Lw (1991). UASB-process design for various types of wastewaters. Water Sci. Technol. 24(8): 87–107

    CAS  Google Scholar 

  • Lettinga G, Roersma R, Grin P, De Zeew WJ, Hulshoff Pol LW, Hobma SW, Van Verlen AFM & Zeeman G (1981) Anaerobic Treatment of Sewage and Low Strength Wastewaters. Anaerobic Digestion, Elsevier Biomedical Press (pp 271–291)

  • Lettinga G, Van Velsen AFM, Hobma SW, De Zeew WJ and Klapwijk A (1980). Use of Upflow Sludge Blaket (USB) reactor concept for biological wastewater treatment. Biotechnol. Bioeng. 22: 699–734

    Article  CAS  Google Scholar 

  • Li YY and Noike T (1992). Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Sci. Technol. 26: 857–866

    CAS  Google Scholar 

  • Liu Y (2000). Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge. Water Res. 34: 2025–2030

    Article  CAS  Google Scholar 

  • Liu JC, Lee CH, Lai JY, Wang KC, Hsu YC and Chang BV (2001). Extracellular polymers of ozonized waste activated sludge. Water Sci. Technol. 44(10): 137–142

    CAS  Google Scholar 

  • Liu Y and Tay JH (2001). Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol. Adv. 19(2): 97–107

    Article  Google Scholar 

  • Low EW, Chase HA, Milner MG and Curtis TP (2000). Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Res. 34(12): 3204–3212

    Article  CAS  Google Scholar 

  • Low EW and Chase HA (1998). The use of chemical uncouplers for reducing biomass production during biodegradation. Water Sci. Technol. 37(4–5): 399–402

    Article  CAS  Google Scholar 

  • Luxmy BS, Kubo T and Yamamoto K (2001). Sludge reduction potential of metazoan in membrane bioreactors. Water Sci. Technol. 44(10): 197–202

    CAS  Google Scholar 

  • Martinage V and Paul E (2000). Effect of environmental parameters on autotrophic decay rate. Environ. Technol. 21: 31–41

    CAS  Google Scholar 

  • Mason CA, Hamer G and Bryers D (1986). The death and lysis of microorganisms in environmental processes. FEMS Microbiol. Rev. 39: 373–401

    Article  CAS  Google Scholar 

  • Mason CA and Hamer G (1987). Cryptic growth in Klebsiella pneumoniae. App. Microbiol. 25: 577–584

    CAS  Google Scholar 

  • Mayhew M and Stephenson T (1998). Biomass yield reduction: Is biochemical manipulation possible without affecting activated sludge process efficiency?. Water Sci. Technol. 38(8–9): 137– 144

    Article  CAS  Google Scholar 

  • McCarty PL & Bachmann A (1992) United States Patent No. 5.091.315, 1992

  • McWhirter JR (1978) Oxygen and activate sludge process. McWhirter JR editor. The Use o High-Purity Oxygen in the Activate Sludge Process. vol. 1. CRC Press, Boca Raton, FL (pp 25–62)

  • Mels A (2001) Physical-chemical pre-treatment as an option for increased sustainability of municipal wastewater treatment plants. Thesis Wageningen University, Wageningen, The Netherlands

  • Mels AR, Zeeman G & van Lier JB (2003) Potential of (anaerobic) pre-treatment to reduce the excess sludge production of wastewater treatment plants. Proceedings IWA Leading Edge Conference Series. Noordwijk, May 2003

  • Menert A, Blonskaja V, Vaalu T, Sokk O & Mölder H (2001) Comparison of some physical and chemical pre-treatment methods for excess sludge. Proceedings. 9th World Congress, Anaerobic Conversion for Sustainability

  • Mesas JA (2003) Efecto de los ultrasonidos en el tratamiento de lodos de depuradora de aguas residuales. Tecnología del agua, 232. Enero, 2003

  • Mukherjee SR and Levine AD (1992). Chemical solubilization of particulate organics as a pre-treatment approach. Water Sci. Technol. 26(9–11): 2289–2292

    CAS  Google Scholar 

  • Müller J. (1996) Mechanischer Klärschlammaufschlβ, Ph.D. thesis, Technical University of Braunschweig, ISBN 3–82–2053

  • Müller J (2000). Disientegration as a key-step in sewage sludge treatment. Water Sci. Technol. 41(8): 123–130

    Google Scholar 

  • Müller JA, Winter A and Strünkmann G (2004). Investigation and assessment of sludge pre-treatment processes. Water. Sci. Techol. 49(10): 97–104

    Google Scholar 

  • Müller JA (2000). Pre-treatment processes for the recycling and reuse of sewage sludge. Water. Sci. Techol. 42(9): 167–174

    Google Scholar 

  • Müller JA (2001). Prospects and problems of sludge pre-treatment processes. Water. Sci. Technol. 44(10): 121–128

    Google Scholar 

  • Mustapha S and Forster CF (1985). Examination into the gamma irradiation of activated sludge. Enzyme Microbiology Technology 7: 179–181

    Article  CAS  Google Scholar 

  • Mustranta A and Viikai L (1993). Dewatering of activated sludge by an oxidative treatment. Water Sci. Technol. 28(1): 213–221

    CAS  Google Scholar 

  • Nies, Nickel UK and Tiehm A (2000). Enhancement of anaerobic digestion by ultrasonic disintegration. Water Sci. Technol. 42(9): 73–80

    CAS  Google Scholar 

  • Odegaard H, Paulsrud B and Karlson I (2002). Wastewater sludge as a resource – sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge. Water Sci. Technol. 46(10): 295–303

    CAS  Google Scholar 

  • Odegaard H (2004). Sludge minimization technologies – an overview. Water Sci. Technol. 49(10): 31–40

    CAS  Google Scholar 

  • Okey RW and Stensel DH (1993). Uncouplers and activated sludge - the impact on synthesis and respiration. Toxicol. Environ. Chem. 40: 235–54

    Article  CAS  Google Scholar 

  • Onyeche TI, Schlaefer O, Schroeder C, Bormann H & Sievers M (2001) Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion. Proceedings. 9th World Congress, Anaerobic Conversion for Sustainability

  • Otte-Witte R, Wünsch M & Hodder M (2000) Sludge disintegration by Lysate thickening centrifuge. Paper presented at the 5th Biosolids Conference, Wakefield, UK, November 2000

  • Parkin JF and Owen WF (1986). Fundamentals of anaerobic digestion of wastewater sludge. J. Environ. Eng. Div. Am. Soc. Civil Eng. 122: 867–920

    Google Scholar 

  • Patterson Darrel A, Lars Stenmark & Fiona Hogan (2001) Pilot-scale supercritical water oxidation of sewage sludge. Proceedings CIWEM/Aqua Enviro Consult. Serv. 6th European Session 8, paper 52, 8 pages

  • Peddie, Craig & McQuarrie (2000) Thermophilic anaerobic digestion: 3 years of Class A performance. Water Environment Federation Biosolids Specialty Conference Proceedings. Boston, MA, Session 11

  • Peltola RJ, Laine VH, Kautola H & Kymäläinen MAL (2004) Impact grinding as pre-treatment method for biowaste and sludge. Proceedings, 10th World Congress Montréal, Canada

  • Pinnekamp J (1989). Effects of thermal pre-treatment of sewage sludge on anaerobic digestion. Water Sci. Technol. 21(4–5): 97–108

    CAS  Google Scholar 

  • Pirt SJ (1965). The maintenance energy of bacteria in growing cultures. Proc. R. Soc. London B 163: 224–231

    CAS  Google Scholar 

  • Prechtl S, Scheneider R, Bischof F, Faulstich M. (2001) Digestion of waste water after pre-treatment by the process of thermal pressure hydrolysis. Proceedings. 9th World Congress, Anaerobic Conversion for Sustainability

  • Ratsak Ch, Kooijman SALM and Kooi BW (1993). Modelling the growth of an oligochaete on activated sludge. Water Res. 27(5): 739–747

    Article  CAS  Google Scholar 

  • Recktenwald M & Karlson I (2003) Recovery of wastewater sludge components by acid hydrolysis. Proceedings IWA Specialised Conference BIOSOLIDS 2003: Wastewater as a resource. Throndheim, Norway (pp 23–25 June, 2003)

  • Rensik JH and Rulkens WH (1997). Using metazoan to reduce sludge production. Water Sci. Technol. 36(11): 171–179

    Article  Google Scholar 

  • Rivard CJ & Nagle NJ (1998) Pre-treatment of high solid microbial sludges. United States Patent. No. patent 5.785.852, July 28, 1998

  • Rocher M, Goma G, Pilas Gegue A, Louvel L and Rolls JL (1999). Towards a reduction in excess sludge production in activated sludge processes: biomass physicochemical treatment and biodegradation. Appl. Microbiol. Biotecnol. 51: 883–890

    Article  CAS  Google Scholar 

  • Rocher M, Roux G, Goma G, Begue AP, Louvel L and Rols JL (2001). Excess sludge reduction in activated sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment. Water Sci. Technol. 44(2–3): 437–444

    CAS  Google Scholar 

  • Rosenberger S, Kruger U, Witxig R, Manz W, Szewzyk U and Kraume M (2002). Performance of a biorreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res. 36(2): 413–420

    Article  CAS  Google Scholar 

  • Saby S, Djafer M and Chen GH (2002). Feasibility of using a chlorination step to reduce excess sludge in activated sludge process. Water Res. 36(3): 656–666

    Article  CAS  Google Scholar 

  • Sakai Y, Aoyagi T, Shiota N, Akashi A and Hasegawa S (2000). Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Sci. Technol. 42(9): 81–88

    CAS  Google Scholar 

  • Sakay Y, Fukase T, Yasui H and Shibata M (1997). An activated sludge process without sludge production. Water Sci. Technol. 36(11): 163–170

    Article  Google Scholar 

  • Sanz I and Fdz-Polanco F (1989). Anaerobic Treatment of Municipal Sludge in UASB and AFBR reactors. Environm. Technol. Lett. 10: 453–462

    Article  CAS  Google Scholar 

  • Sanz I and Fdz-Polanco F (1990). Low Temperature Treatment of Municipal Sewage in Anaerobic Fluidised Bed Reactors. Water Res. 24(4): 463–469

    Article  CAS  Google Scholar 

  • Schaeffer, Perry, Tracy Ekola, Steve Krungel & Shihwu Sung (2000) Project Development for temperature-phased anaerobic digestion of the western Lake Superior Sanitary District. Water Environment Federation Biosolids Specialty Conference Proceedings, Boston, MA, Session 11

  • Scheminski A, Krull R & Hempel DC (1999) Oxidative treatment of digested sewage sludge with ozone. IAQW-specialised conference on disposal and utilisation of sewage sludge: Treatment methods and application modalities. Athens, Greece (pp 241–248)

  • Shanableh A & Shimizu Y (2000) Treatment of sewage sludge using hydrothermal oxidation – technology application challenges. Water and Science Technology, Proceedings Sludge Management for the 21th century, IWA, vol. 41 (8): 85–92

  • Shinko Pantec (1999) Information material on the S-TE process. Shinko Pantec, Kobe, 1999

  • Shiota N, Akashi A and Hasegawa S (2002). A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Sci. Technol. 45(12): 127–134

    CAS  Google Scholar 

  • Stephenson RJ & Dhaliwal H (2000) Method of liquefying microorganisms derived from wastewater treatment processes. US Patent No 6.013.183, 2000

  • Stephenson RJ, Laliberte S & Elson P (2004) Use of a high-pressure homogenizer to pre-treat municipal biosolids: introducing the MicroSludgeTM process. Proceedings, 10th World Congress Montréal, Canada

  • Svanström M, Modell M & Tester J (Sweden/USA). (2003) Direct energy recovery from primary and secondary sludges by supercritical water oxidation. Proceedings IWA Specialised Conference BIOSOLIDS 2003: Wastewater as a resource. Throndheim, Norway (pp 23–25 June, 2003)

  • Svanström, Magdalena et al. (2001) Life cycle assessment of Supercritical Water Oxidation on Sewage Sludge. Proc. CIWEM/Aqua Enviro Consult. Service. 6th European Biosolids and Organic Residuals Conference, Wakefield, West Yorkshire UK, November 12--14, Session 8, paper 53, 12 pages.

  • Tanaka S, Kobayashi T, Kamiyama KI and Bildan LNS. (1997). Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 35(8): 209–215

    Article  CAS  Google Scholar 

  • Theodore, Onyeche & Sven Schäfer (2003) Sludge homogenisation as a means to reduce sludge volume and increase energy production. Ejeafche ISSN: 1579–4377, Volumen 2 (Issue 2), 2003

  • Thomas L, Jungschaffer G and Sprössler B (1993). Improved sludge dewatering by enzymatic treatment. Water Sci. Technol. 28(1): 189–192

    CAS  Google Scholar 

  • Thor R (1995) The effect of a pH-adjustment combined with thermal pre-treatment on the dewatering of sewage sludge. Vatten 51: 135–139, Lund

    Google Scholar 

  • Tiehm A, Nickel K and Neis U (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Wat. Sci. Technol. 36(11): 121–128

    Article  CAS  Google Scholar 

  • Tiehm A, Nickel K, Zellhorn M and Neis U (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water. Res. 35(8): 2003–2009

    Article  CAS  Google Scholar 

  • Tsai SP and Lee YH (1990). A model for energy-sufficient culture growth. Biotechnol. Bioeng. 35: 138–145

    Article  CAS  Google Scholar 

  • Wagner J and Rosenwinkel KH (2000). Sludge production in membrane bioreactors under different conditions. Water Sci. Technol. 41(10–11): 251–258

    CAS  Google Scholar 

  • Wang RC and Lin WC (1998). Fluidized bed incineration in capturing trace metals of sewage sludge. J. Chem. Eng. Jpn. 31(6): 897–902

    Article  CAS  Google Scholar 

  • Weemaes M and Verstraete WH (1998). Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 73: 83–92

    Article  CAS  Google Scholar 

  • Wei YS, Van Houten RT, Borger AR, Eikelboom DH and Fan YB (2003). Minimization of excess sludge production for biological wastewater treatment. Water. Res. 37(18): 4453–4467

    Article  CAS  Google Scholar 

  • Weiland P and Rozzi A (1991). Ths start-up operation and monitoring of high-rate anaerobic treatment systems: Discusers report. Water Sci. Techol. 24(8): 257–277

    CAS  Google Scholar 

  • Weise Th HGG and Jung M. (1998). Klärschlammbehandlung mit der Hochleistungspulstechnik. Veröffentlichung des Institutts für Siedlungswasserwirtschaft der TU Braunschweig, Heft 61: 75–82

    Google Scholar 

  • Weise Th HGG & Jung M (2001) Sludge disintegration by electrical shockwaves. International Conference on Pulsed Power Applications. Gelsenkirchen, March 2001

  • Weisz N, Kepp U, Norli M, Panter K & Solheim OE (2000) Sludge disintegration with thermal hydrolysis – cases from Norway, Denmark and United Kingdom. 1’st IWA World Congress, Paris 3–7 July. Pre-prints. Book 4: 288–295

  • Welander T & Lee NM (1994) Minimization of sludge production in anaerobic treatment by use of predators. The Second International Symposium on Environmental Biotechnology, 4–6 July 1994, Brigton, UK

  • Westgarth WC, Sulzer FT & Okun DA (1964) Anaerobiosis in the activated sludge process. Proceedings of the Second IAWPRC Conference. Tokyo (pp 43–55)

  • Whipps & Whiting K (1999) Gasification of organic wastes – Potential for the UK. 4th European Biosolids and Organic Residuals Conference. Wakefield, UK. November, paper 40: 1–15

  • Winter A (2002). Minimisation of costs by using disintegration at a full-scale anaerobic digestion plant. Water Sci. Technol. 46(4–5): 405–412

    CAS  Google Scholar 

  • Wunderlich R, Barry J, Greenwood D and Carry C (1985). Start-up of a high-purity, oxygen-activated sludge system at the Los Angeles County Sanitation Districts’ Joint Water Pollution Control Plant. J. Water Pollut. Control Fed. 57: 1012–1018

    CAS  Google Scholar 

  • Yamamoto K, Hiasa M, Mahmood T and Matsuo T (1989). Direct solid-liquid separation using hollow fibre membrane in an activated sludge aeration tank. Water Sci. Technol. 21: 43–54

    CAS  Google Scholar 

  • Yasui H, Nakamura K, Sakuma S, Iwasaki M and Sakai Y. (1996). A full-scale operation of a novel activated sludge process without excess sludge production. Water Sci. Technol. 34(3–4): 395–404

    Article  CAS  Google Scholar 

  • Yasui H and Shibata M (1994). An innovative approach to reduce excess sludge production in the activated sludge process. Water Sci. Technol. 30(9): 11–20

    CAS  Google Scholar 

  • Yeager JG and O’Brien RT (1983). Irradiation as a means to minimise public health risks from sludge-borne pathogens. J. WPCF 55(7): 977–983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fdz-Polanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Elvira, S.I., Nieto Diez, P. & Fdz-Polanco, F. Sludge minimisation technologies. Rev Environ Sci Biotechnol 5, 375–398 (2006). https://doi.org/10.1007/s11157-005-5728-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-005-5728-9

Keywords

Navigation