Skip to main content
Log in

Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC50 = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarti PD, Tanaka R, Tanaka A (2006) Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol Plant 128:186–197

    Article  CAS  Google Scholar 

  • Antunes SC, Freitas R, Figueira E, Gonçalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environ Sci Pollut Res 20(8):6658–6666

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teari T (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14(3):89–97

    Article  CAS  Google Scholar 

  • Boleda MA, Galceran MA, Ventura F (2011) Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ Pollut 159(6):1584–1591

    Article  CAS  Google Scholar 

  • Boxall AB, Rudd M, Brooks BW, Caldwell D, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T (2012) Pharmaceuticals and personal care products in the environment: what are the big questions. Environ Health Perspect 120:1221–1229

    Article  Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Hanson ML, Sanderson H, Lam MW, Young C, Mabury SA, Sibley PK, Solomon KR (2004) Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquat Toxicol 70:23–40

    Article  CAS  Google Scholar 

  • Brain RA, Hanson ML, Solomon KR, Brooks BW (2008) Aquatic plants exposed to pharmaceuticals: effects and risks. Rev Environ Contam Toxicol 192:67–115

    CAS  Google Scholar 

  • Brandão FP, Pereira JL, Gonçalves F, Nunes B (2011) The impact of paracetamol on selected biomarkers of the mollusk species Corbicula fluminea. Environ Toxicol 1–10

  • Brind AM (2007) Drugs that damage the liver. Medicine 35(1):26–30

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Bull RJ, Crook J, Whittaker M, Cotruvo JA (2011) Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater. Regul Toxicol Pharmacol 60(1):1–19

    Article  CAS  Google Scholar 

  • Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40(4):287–304

    Article  CAS  Google Scholar 

  • Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl 6):907–938

    Article  CAS  Google Scholar 

  • Davy M, Petrie R, Smrchek J, Kuchnicki T, Francois D (2001) Proposal to update non-target plant toxicity testing under NAFTA. USEPA, Washington, DC

    Google Scholar 

  • Dogan M, Saygideger SD, Ugur Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

    Google Scholar 

  • Elkahoui E, Hernández JA, Abdelly C, Ghrir R, Limama F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613

    Article  CAS  Google Scholar 

  • Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferrari B, Paxéus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370

    Article  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  CAS  Google Scholar 

  • García SO, Pinto GP, Encina PG, Mata RI (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465

    Article  Google Scholar 

  • Hinson JA, Reid AB, McCullough SS, James LP (2004) Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev 36

  • Huang L, Lu D, Zhang P, Diao J, Zhou Z (2012) Enantioselective toxic effects of hexaconazole enantiomers against Scenedesmus obliquus. Chirality 24(8):610–614

    Article  CAS  Google Scholar 

  • Huber C, Bartha B, Harpaintner R, Schröder P (2009) Metabolism of acetaminophen (paracetamol) in plants—two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ Sci Pollut Res 16:206–213

    Article  CAS  Google Scholar 

  • Huber C, Bartha B, Schröder P (2012) Metabolism of diclofenac in plants—hydroxylation is followed by glucose conjugation. J Hazard Mater 243:250–256

    Article  CAS  Google Scholar 

  • Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89(1):31–41

    Article  CAS  Google Scholar 

  • Jaeschke H, Knight TR, Bajt ML (2003) The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 144:279–288

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022

    Article  CAS  Google Scholar 

  • Klaassen CD (2001) Casarett & Doull’s toxicology: the basic science of poisons, 6th edn. Mc Graw Hill, New York

    Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Lewis MA, Wang W (1999) In: Gerhardt A (ed) Biomonitoring using aquatic vegetation. Environmental Science Forum 9. Trans Tech Publications, Switzerland, pp 243–274

    Google Scholar 

  • Li W, Shi Y, Gao L, Liu J, Cai Y (2012) Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89(11):1307–1315

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lourenção BC, Medeiros RA, Filho RCR, Mazo LH, Filho OF (2009) Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78:748–752

    Article  Google Scholar 

  • Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C 153:175–190

    Google Scholar 

  • Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88(10):1257–1264

    Article  CAS  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants: not only stress. Plant Signal Behav 4:1016–1018

    Article  CAS  Google Scholar 

  • Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003a) Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ Toxicol Chem 22:2872–2880

    Article  CAS  Google Scholar 

  • Metcalfe CD, Miao X-S, Koenig BG, Struger J (2003b) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22:2881–2889

    Article  CAS  Google Scholar 

  • Micheu S, Crailsheim K, Leonhard B (2000) Importance of proline and other amino acids during honeybee flight (Apis mellifera carnica POLLMANN). Amino Acids 18:157–175

    Article  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of greengram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2004) Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki. Chemosphere 57:1581–1589

    Article  CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2005) Acute toxicity of widely used pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicol Environ Saf 61:413–419

    Article  CAS  Google Scholar 

  • OECD (2006) Lemna sp. growth inhibition test. OECD–Guideline for Testing of Chemicals, Paris, p 221

    Google Scholar 

  • Patel M, Tang BK, Kalow W (1993) Variability of acetaminophen metabolism in Caucasians and Orientals. Pharmacogenetics 2(1):38–45

    Article  Google Scholar 

  • Pérez S, Barceló D (2007) Application of advanced MS techniques to analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. TrAC Trends Anal Chem 26(6):494–514

    Article  Google Scholar 

  • Prescott LF (1980) Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol 10:291S–298S

    Article  Google Scholar 

  • Rejmánková E (1975) Comparison of Lemna gibba and Lemna minor from the production ecological viewpoint. Aquat Bot 1:423–427

    Article  Google Scholar 

  • Roberts P, Thomas K (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356:143–153

    Article  CAS  Google Scholar 

  • Rodrigues S, Antunes SC, Brandão FP, Castro BB, Gonçalves F, Nunes B (2012) Effects of anticholinesterase drugs on biomarkers and behavior of pumpkinseed, Lepomis gibbosus (Linnaeus, 1758). J Environ Monit 14(6):1638–1644

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004) Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul Toxicol Pharmacol 39:158–183

    Article  CAS  Google Scholar 

  • Solé M, Shaw JP, Frickers PE, Readman JW, Hutchinson TH (2010) Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal Bioanal Chem 396:649–656

    Article  Google Scholar 

  • Stewart PM, Scribailo RW, Simon TP (1999) In: Gerhardt A (ed) The use of aquatic macrophytes in monitoring and in assessment of biological integrity. Environmental Science Forum 9. Trans Tech Publications, Switzerland, pp 275–302

    Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):13650–1385

    Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  Google Scholar 

  • Xu JJ, Hendriks BS, Zhao J, Graaf D (2008) Multiple effects of acetaminophen and p38 inhibitors: towards pathway toxicology. FEBS Lett 582:1276–1282

    Article  CAS  Google Scholar 

  • Yan S, Zhou Q (2011) Toxic effects of Hydrilla verticillata exposed to toluene, ethylbenzene and xylene and safety assessment for protecting aquatic macrophytes. Chemosphere 85:1088–1094

    Article  CAS  Google Scholar 

  • Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013. Glória Pinto was hired under the programme Ciência 2008 (FCT, Portugal) and Bruno Nunes under the programme Investigador FCT co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013) and European Social Fund (EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nunes.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, B., Pinto, G., Martins, L. et al. Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba . Environ Sci Pollut Res 21, 10815–10822 (2014). https://doi.org/10.1007/s11356-014-3059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3059-5

Keywords

Navigation