Skip to main content

Advertisement

Log in

A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea)

  • Heavy Metals in the Environment : Sources, Interactions and Human Health
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) mobility at the sediment–water interface was investigated during a laboratory incubation experiment conducted with highly contaminated sediments (13 μg g-1) of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia) mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed and can influence the Hg biogeochemical behavior, a redox oscillation was simulated in the laboratory, at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg (DHg) and methylmercury (MeHg), O2, NH4 +, NO3 - + NO2 -, PO4 3-, H2S, dissolved Mn2+, dissolved inorganic and organic carbon (DIC and DOC). Under anoxic conditions, both Hg (665 ng m2 day-1) and MeHg (550 ng m2 day-1) fluxed from sediments into the water column, whereas re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn-oxyhydroxides and enhanced demethylation processes. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of DHg species for the water column. On the contrary, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural “defence” from possible interaction between the metal and the aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belias C, Dassenakis M, Scoullos M (2007) Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Mar Chem 103:266–275

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulphide controls on mercury speciation and the bioavailability in sediment porewaters. Environ Sci Technol 33:951–957

    Article  CAS  Google Scholar 

  • Benoit JM, Mason RP, Gilmour CC, Aiken GR (2001) Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochim Cosmochim Acta 65:4445–4451

    Article  CAS  Google Scholar 

  • Biester H, Gosar M, Covelli S (2000) Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine. Environ Sci Technol 34:3330–3336

    Article  CAS  Google Scholar 

  • Bloom N, Fitzgerald WF (1989) Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Anal Chim Acta 208:151–161

    Article  Google Scholar 

  • Bloom NS, Gill GA, Cappellino S, Dobbs C, McShea L, Driscoll C, Mason R, Rudd J (1999) Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environ Sci Technol 33:7–13

    Article  CAS  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248

    Article  CAS  Google Scholar 

  • Bouchet S, Bridou R, Tessier E, Rodriguez-Gonzalez P, Monperrus M, Abril G, Amouroux D (2011) An experimental approach to investigate mercury species transformations under redox oscillations in coastal sediments. Mar Environ Res 71:1–9

    Article  CAS  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) Aquatic geomicrobiology. Adv Mar Biol 48:1–599

    Article  Google Scholar 

  • Cantoni C, Cozzi S, Pecchiar I, Cabrini M, Mozetič P, Catalano G, Fonda Umani S (2003) Short-term variability of primary production and inorganic nitrogen uptake related to the environmental conditions in a shallow coastal area (Gulf of Trieste, N Adriatic Sea). Oceanol Acta 26:565–575

    Article  CAS  Google Scholar 

  • Clarkson TW (1998) Human toxicology of mercury. J Trace Elem Exp Med 11:303–317

    Article  CAS  Google Scholar 

  • Comici C, Bussani A (2007) Analysis of the Isonzo River discharge (1998–2005). Boll Geof Teor Appl 48:435–454

    Google Scholar 

  • Compeau G, Bartha R (1985) Sulphate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Covelli S, Faganeli J, Horvat M, Brambati A (1999) Porewater distribution and benthic fluxes measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar Coast Shelf Sci 48:415–428

    Article  CAS  Google Scholar 

  • Covelli S, Faganeli J, Horvat M, Brambati A (2001) Mercury contamination of coastal sediments as the result of long-term cinnabar activity (Gulf of Trieste, northern Adriatic Sea). Appl Geochem 16:541–558

    Article  CAS  Google Scholar 

  • Covelli S, Piani R, Kotnik J, Horvat M, Faganeli J, Brambati A (2006) Behaviour of Hg species in a microtidal deltaic system: the Isonzo River mouth (northern Adriatic Sea). Sci Total Environ 368:210–223

    Article  CAS  Google Scholar 

  • Covelli S, Piani R, Acquavita A, Predonzani S, Faganeli J (2007) Transport and dispersion of particulate Hg associated to a river plume in coastal Northern Adriatic environments. Mar Pollut Bull 55:436–450

    Article  CAS  Google Scholar 

  • Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M (2008) Benthic fluxes of mercury species in a lagoon environment (Grado lagoon, Northern Adriatic Sea, Italy). Appl Geochem 23:529–546

    Article  CAS  Google Scholar 

  • Emili A, Koron N, Covelli S, Faganeli J, Acquavita A, Predonzani S, De Vittor C (2011) Does anoxia affect mercury cycling at the sediment–water interface in the Gulf of Trieste (northern Adriatic Sea)? Incubation experiments using benthic flux chambers. Appl Geochem 26:194–204

    Article  CAS  Google Scholar 

  • EPA (1998) Method 1630. Methylmercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Draft. March 1998

  • Faganeli J, Avčin A, Fanuko N, Malej A, Turk V, Tušnik P, Vrišer B, Vukovič A (1985) Bottom layer anoxia in the central part of the Gulf of Trieste in the late summer of 1983. Mar Pollut Bull 16(2):75–78

    Article  CAS  Google Scholar 

  • Faganeli J, Pezdic J, Ogorelec B, Herndl GJ, Dolenec T (1991) The role of sedimentary biogeochemistry in the formation of hypoxia in shallow coastal waters (Gulf of Trieste, Northern Adriatic). In: Tyson RV and Pearson TH (eds) Modern and ancient continental shelf anoxia. Geological Society, London, Spec. Publ. 58, pp 107–117

  • Faganeli J, Horvat M, Covelli S, Fajon V, Logar M, Lipej L, Cermelj B (2003) Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea). Sci Total Environ 304:315–326

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Gagnon C, Pelletier M, Mucci A (1997) Behaviour of anthropogenic mercury in coastal marine sediments. Mar Chem 59:159–176

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut 71:131–169

    Article  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Weinheim, Verlag Chemie

    Google Scholar 

  • Hines ME, Horvat M, Faganeli J, Bonzongo JCJ, Barkay T, Major EB, Scott KJ, Bailey EA, Warwick JJ, Lyons WB (2000) Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste. Environ Res 83:129–139

    Article  CAS  Google Scholar 

  • Hines ME, Faganeli J, Adatto I, Horvat M (2006) Microbial Mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia. Appl Geochem 21:1924–1939

    Article  CAS  Google Scholar 

  • Hissler C, Probst JL, Mortatti J (2006) Annual inorganic mercury speciation in river water disturbed by chlor-alkali effluents: role and competition of ligands (Cl-, Br-, DOC). Geochim Bras 20:133–147

    Google Scholar 

  • Horvat M, Miklavčič V, Pihlar B (1991) Determination of total mercury in coal fly ash by gold amalgamation cold vapour atomic absorption spectrometry. Anal Chim Acta 243:71–79

    Article  CAS  Google Scholar 

  • Horvat M, Bloom NS, Liang L (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: Part II. Water. Anal Chim Acta 282:153–168

    Article  CAS  Google Scholar 

  • Horvat M, Covelli S, Faganeli J, Logar M, Mandic V, Rajar R, Sirca A, Zagar D (1999) Mercury in contaminated coastal environments; a case study: the Gulf of Trieste. Sci Total Environ 237(238):43–56

    Article  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB, Westlund P, Shchukarev A, Lundberg E, Björn E (2012) Mercury Methylation Rates for Geochemically Relevant Hg(II) Species in Sediments. Environ Sci Technol 46:11653–11659

    Article  CAS  Google Scholar 

  • Kemp M, Faganeli J, Puskaric S, Smith EM, Boynton WR (1999) Pelagic–benthic coupling and nutrient cycling. In: Malone TC et al (eds) Ecosystems at the land–sea margin: drainage basin to coastal sea. AGU, Washington DC, USA, pp 295–339

    Chapter  Google Scholar 

  • Koron N, Faganeli J (2012) Benthic fluxes of mercury during redox changes in pristine coastal marine sediments from the Gulf of Trieste (northern Adriatic Sea). J Soils Sediments 12:1604–1614

    Article  CAS  Google Scholar 

  • Malej A, Mozetic P, Malacic V, Terzic S, Ahel M (1995) Phytoplankton responses to freshwater inputs in a small semi-enclosed gulf (Gulf of Trieste, Adriatic Sea). Mar Ecol Prog Ser 120:111–121

    Article  Google Scholar 

  • Mason R, Kim E-H, Cornwell J, Heyes D (2006) An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Mar Chem 102:96–110

    Article  CAS  Google Scholar 

  • Merritt KA, Amirbahman A (2009) Mercury methylation dynamics in estuarine and coastal marine environments—a critical review. Earth Sci Rev 96:54–66

    Article  CAS  Google Scholar 

  • Muresan B, Cossa D, Jezequel D, Prevot F, Kerbellec S (2007) The biogeochemistry of mercury at the sediment–water interface in the Thau Lagoon: 1. Partition and speciation. Estuar Coast Shelf Sci 72:472–484

    Article  CAS  Google Scholar 

  • Ogrinc N, Faganeli J (2006) Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea). Estuar Coast Shelf Sci 67:579–588

    Article  Google Scholar 

  • Shi J, Liang L, Jiang G, Jin X (2005) The speciation and bioavailability of mercury in sediments of Haihe River, China. Environ Int 31:357–365

    Article  CAS  Google Scholar 

  • Stravisi F (1983) The vertical structure annual cycle of the mass field parameters in the Gulf of Trieste. Boll Oceanol Teor Appl 1:239–250

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michele Giani and Cinzia De Vittor of OGS Trieste for H2S and DIC analyses, Daniela Berto of ISPRA Chioggia for DOC analyses, and Brenda Lasorsa of Battelle Marine Sciences Laboratory Sequim, WA for DMeHg analyses. Luis Carrasco kindly acknowledges a predoctoral fellowship (programa I3P) from the Consejo Superior de Investigaciones Científicas (CSIC, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Emili.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emili, A., Carrasco, L., Acquavita, A. et al. A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea). Environ Sci Pollut Res 21, 4124–4133 (2014). https://doi.org/10.1007/s11356-013-2225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2225-5

Keywords

Navigation