Skip to main content
Log in

Biogeochemical Cycle of Mercury and Methylmercury in Two Highly Contaminated Areas of Tagus Estuary (Portugal)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mercury (Hg) dynamics was evaluated in contaminated sediments and overlying waters from Tagus estuary, in two sites with different Hg anthropogenic sources: Cala Norte (CNOR) and Barreiro (BRR). Environmental factors affecting methylmercury (MMHg) production and Hg and MMHg fluxes across sediment/water interface were reported. [THg] and [MMHg] in solids (0.31–125 μg g−1 and 0.76–201 ng g−1, respectively) showed high variability with higher values in BRR. Porewater [MMHg] (0.1–63 ng L−1, 0.5–86% of THg) varied local and seasonally; higher contents were observed in the summer campaign, thus increasing sediment toxicity affecting the sediment/water Hg (and MMHg) fluxes. In CNOR and BRR sediments, Hg availability and organic carbon were the main factors controlling MMHg production. Noteworthy, an upward MMHg diffusive flux was observed in winter that was inverted in summer. Although MMHg production increases in warmer month, the MMHg concentrations in overlying water increase in a higher proportion compared to the levels in porewaters. This opposite trend could be explained by different extension of MMHg demethylation in the water column. The high concentrations of Hg and MMHg and their dynamics in sediments are of major concern since they can cause an exportation of Hg from the contaminated areas up to ca. 14,600 mg year−1 and an MMHg deposition of up to ca. 6000 mg year−1. The results suggest that sediments from contaminated areas of Tagus estuary should be considered as a primary source of Hg for the water column and a sink of MMHg to the sedimentary column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abi-Ghanem, C., Nakhlé, K., Khalaf, G., & Cossa, D. (2011). Mercury distribution and methylmercury mobility in the sediments of three sites on the Lebanese coast, eastern Mediterranean. Archives of Environmental Contamination and Toxicology, 60(3), 394–405. doi:10.1007/s00244-010-9555-9.

    Article  CAS  Google Scholar 

  • Acquavita, A., Covelli, S., Emili, A., Berto, D., Faganeli, J., Giani, M., et al. (2012). Mercury in the sediments of the Marano and Grado Lagoon (northern Adriatic Sea): sources, distribution and speciation. Estuarine, Coastal and Shelf Science, 113, 20–31. doi:10.1016/j.ecss.2012.02.012.

    Article  CAS  Google Scholar 

  • APHA. (1995). In A. E. Greenberg (Ed.), Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • Barkay, T., & Wagner-Döbler, I. (2005). Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Advances Applied Microbiology, 57, 1–52. doi:10.1016/S0065-2164(05)57001-1.

    Article  CAS  Google Scholar 

  • Beckvar, N., Field, J., Salazar, S., & Hoff, R. (1996). Contaminants in aquatic habitats at hazardous waste sites: mercury. Technical Memorandum NOS ORCA 100, (December), 80 pp.

  • Benner, R., & Strom, M. (1993). A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Marine Chemistry, 41(1–3), 153–160. doi:10.1016/0304-4203(93)90113-3.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001). Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Applied and Environmental Microbiology, 67(1), 51–58. doi:10.1128/AEM.67.1.51-58.2001.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., Mason, R. P., Riedel, G. S., & Riedel, G. F. (1998). Behavior of mercury in the Patuxent River estuary. Biogeochemistry, 40(2–3), 249–265. doi:10.1023/a:1005905700864.

    Article  CAS  Google Scholar 

  • Bloom, N. S., Gill, G. A., Cappellino, S., Dobbs, C., McShea, L., Driscoll, C., et al. (1999). Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environmental Science & Technology, 33(1), 7–13. doi:10.1021/es980379d.

    Article  CAS  Google Scholar 

  • Bonzongo, J. C. J., Heim, K. J., Chen, Y. A., Lyons, W. B., Warwick, J. J., Miller, G. C., & Lechler, P. J. (1996). Mercury pathways in the Carson River-Lahontan reservoir system, Nevada, USA. Environmental Toxicology and Chemistry, 15(5), 677–683. doi:10.1897/1551-5028(1996)015<0677:MPITCR>2.3.CO;2.

  • Boudreau, B. P. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16), 3139–3142. doi:10.1016/0016-7037(96)00158-5.

    Article  CAS  Google Scholar 

  • Bratkič, A., Ogrinc, N., Kotnik, J., Faganeli, J., Žagar, D., Yano, S., et al. (2013). Mercury speciation driven by seasonal changes in a contaminated estuarine environment. Environmental Research, 125, 171–178. doi:10.1016/j.envres.2013.01.004.

    Article  Google Scholar 

  • Bravo, A. G., Cosio, C., Amouroux, D., Zopfi, J., Chevalley, P.-A., Spangenberg, J. E., et al. (2014). Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research, 49, 391–405. doi:10.1016/j.watres.2013.10.024.

    Article  CAS  Google Scholar 

  • Caçador, I., & Duarte, B. (2012). Tagus estuary salt marsh structure and dynamics: a historical perspective. Estuaries: Classification, Ecology and Human Impacts, (January), 41–56.

  • Canário, J., Antunes, P., Lavrado, J., & Vale, C. (2004). Simple method for monomethylmercury determination in estuarine sediments. TrAC - Trends in Analytical Chemistry, 23(10–11), 799–806. doi:10.1016/j.trac.2004.08.009.

    Article  Google Scholar 

  • Canário, J., Branco, V., & Vale, C. (2007a). Seasonal variation of monomethylmercury concentrations in surface sediments of the Tagus Estuary (Portugal). Environmental Pollution, 148(1), 380–383. doi:10.1016/j.envpol.2006.11.023.

    Article  Google Scholar 

  • Canário, J., Caetano, M., & Vale, C. (2006). Validation and application of an analytical method for monomethylmercury quantification in aquatic plant tissues. Analytica Chimica Acta, 580(2), 258–262. doi:10.1016/j.aca.2006.07.055.

    Article  Google Scholar 

  • Canário, J., Caetano, M., Vale, C., & Cesário, R. (2007b). Evidence for elevated production of methylmercury in salt marshes. Environmental Science and Technology, 41(21), 7376–7382. doi:10.1021/es071078j.

    Article  Google Scholar 

  • Canário, J., Vale, C., & Nogueira, M. (2008a). The pathway of mercury in contaminated waters determined by association with organic carbon (Tagus Estuary, Portugal). Applied Geochemistry, 23(3), 519–528. doi:10.1016/j.apgeochem.2007.12.019.

    Article  Google Scholar 

  • Canário, J., Poissant, L., O’Driscoll, N., Ridal, J., Delongchamp, T., Pilote, M., et al. (2008b). Mercury partitioning in surface sediments of the Upper St. Lawrence River (Canada): evidence of the importance of the sulphur chemistry. Water, Air, and Soil Pollution, 187(1–4), 219–231. doi:10.1007/s11270-007-9510-1.

    Google Scholar 

  • Canario, J., Prego, R., Vale, C., & Branco, V. (2007c). Distribution of mercury and monomethylmercury in sediments of Vigo Ria, NW Iberian Peninsula. Water, Air, and Soil Pollution, 182(1–4), 21–29. doi:10.1007/s11270-006-9317-5.

    Article  CAS  Google Scholar 

  • Canário, J., Vale, C., & Caetano, M. (2005). Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Marine Pollution Bulletin, 50(10), 1142–1145. doi:10.1016/j.marpolbul.2005.06.052.

    Article  Google Scholar 

  • Canário, J., Vale, C., Caetano, M., & Madureira, M. J. (2003). Mercury in contaminated sediments and pore waters enriched in sulphate (Tagus Estuary, Portugal). Environmental Pollution, 126(3), 425–433. doi:10.1016/S0269-7491(03)00234-3.

    Article  Google Scholar 

  • Celo, V., Lean, D. R. S., & Scott, S. L. (2006). Abiotic methylation of mercury in the aquatic environment. Science of the Total Environment, 368(1), 126–137. doi:10.1016/j.scitotenv.2005.09.043.

    Article  CAS  Google Scholar 

  • Cesário, R., Monteiro, C. E., Nogueira, M., O’Driscoll, N. J., Caetano, M., Hintelmann, H., et al. (2016). Mercury and methylmercury dynamics in sediments on a protected area of Tagus Estuary (Portugal). Water, Air, & Soil Pollution, 227(12), 475. doi:10.1007/s11270-016-3179-2.

    Article  Google Scholar 

  • Cesário, R., Poissant, L., Pilote, M., O’Driscoll, N. J., Mota, A. M., & Canário, J. (2017). Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments. Science of the Total Environment. doi:10.1016/j.scitotenv.2017.06.093.

  • Choe, K.-Y., Gill, G. A., Lehman, R. D., Han, S., Heim, W. A., & Coale, K. H. (2004). Sediment-water exchange of total mercury and monomethyl mercury in the San Francisco Bay Delta. Limnology and Oceanography, 49(5), 1512–1527. doi:10.4319/lo.2004.49.5.1512.

    Article  CAS  Google Scholar 

  • Conaway, C. H., Squire, S., Mason, R. P., & Flegal, A. R. (2003). Mercury speciation in the San Francisco Bay estuary. Marine Chemistry, 80(2–3), 199–225. doi:10.1016/S0304-4203(02)00135-4.

    Article  CAS  Google Scholar 

  • Costley, C. T., Mossop, K. F., Dean, J. R., Garden, L. M., Marshall, J., & Carroll, J. (2000). Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Analytica Chimica Acta, 405(1–2), 179–183. doi:10.1016/S0003-2670(99)00742-4.

    Article  CAS  Google Scholar 

  • Covelli, S., Emili, A., Acquavita, A., Koron, N., & Faganeli, J. (2011). Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Continental Shelf Research, 31(16), 1777–1789. doi:10.1016/j.csr.2011.08.005.

    Article  Google Scholar 

  • Covelli, S., Faganeli, J., De Vittor, C., Predonzani, S., Acquavita, A., & Horvat, M. (2008). Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy). Applied Geochemistry, 23(3), 529–546. doi:10.1016/j.apgeochem.2007.12.011.

    Article  CAS  Google Scholar 

  • Covelli, S., Faganeli, J., Horvat, M., & Brambati, A. (1999). Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 48(4), 415–428. doi:10.1006/ecss.1999.0466.

    Article  CAS  Google Scholar 

  • Daye, M., Kadlecova, M., & Ouddane, B. (2015). Biogeochemical factors affecting the distribution, speciation, and transport of Hg species in the Deule and Lys Rivers (Northern France). Environmental Science and Pollution Research, 22(4), 2708–2720. doi:10.1007/s11356-014-3528-x.

    Article  CAS  Google Scholar 

  • Domagalski, J. (2001). Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry, 16(15), 1677–1691. doi:10.1016/s0883-2927(01)00068-3.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407(13), 3972–3985. doi:10.1016/j.scitotenv.2008.07.025.

    Article  Google Scholar 

  • Emili, A., Acquavita, A., Covelli, S., Spada, L., Di Leo, A., Giandomenico, S., & Cardellicchio, N. (2016). Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto’s Mar Piccolo (Ionian Sea, Southern Italy). Environmental Science and Pollution Research, 23(13), 12582–12595. doi:10.1007/s11356-015-5281-1.

    Article  CAS  Google Scholar 

  • Emili, A., Acquavita, A., Koron, N., Covelli, S., Faganeli, J., Horvat, M., et al. (2012). Benthic flux measurements of Hg species in a northern Adriatic lagoon environment (Marano and Grado Lagoon, Italy). Estuarine, Coastal and Shelf Science, 113, 71–84. doi:10.1016/j.ecss.2012.05.018.

    Article  CAS  Google Scholar 

  • Fang, T., & Chen, R. (2010). Mercury contamination and accumulation in sediments of the East China Sea. Journal of Environmental Sciences, 22(8), 1164–1170. doi:10.1016/S1001-0742(09)60233-3.

    Article  CAS  Google Scholar 

  • Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A., & Iribarne, O. (2011). Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuarine, Coastal and Shelf Science, 92(4), 629–638. doi:10.1016/j.ecss.2011.03.002.

    Article  CAS  Google Scholar 

  • Ferreira, J. G. (1995). ECOWIN—an object-oriented ecological model for aquatic ecosystems. Ecological Modelling, 79, 21–34.

    Article  Google Scholar 

  • Figuères, G., Martin, J. M., Meybeck, M., & Seyler, P. (1985). A comparative study of mercury contamination in the Tagus estuary (Portugal) and major French estuaries (Gironde, Loire, Rhône). Estuarine, Coastal and Shelf Science, 20(2), 183–203. doi:10.1016/0272-7714(85)90037-X.

    Article  Google Scholar 

  • Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464. doi:10.1128/AEM.72.1.457-464.2006.

    Article  CAS  Google Scholar 

  • Franz, G., Pinto, L., Ascione, I., Mateus, M., Fernandes, R., Leitão, P., & Neves, R. (2014). Modelling of cohesive sediment dynamics in tidal estuarine systems: case study of Tagus estuary, Portugal. Estuarine, Coastal and Shelf Science, 151, 34–44. doi:10.1016/j.ecss.2014.09.017.

    Article  Google Scholar 

  • Gagnon, C., Pelletier, É., & Mucci, A. (1997). Behaviour of anthropogenic mercury in coastal marine sediments. Marine Chemistry, 59(1–2), 159–176. doi:10.1016/S0304-4203(97)00071-6.

    Article  CAS  Google Scholar 

  • Gagnon, C., Pelletier, E., Mucci, A., & Fitzgerald, W. F. (1996). Diagenetic behavior of methylmercury in organic-rich coastal sediments. Limnology and Oceanography, 41(3), 428–434. doi:10.2307/2838577.

    Article  CAS  Google Scholar 

  • Gameiro, C., Zwolinski, J., & Brotas, V. (2011). Light control on phytoplankton production in a shallow and turbid estuarine system. Hydrobiologia, 669(1), 249–263. doi:10.1007/s10750-011-0695-3.

    Article  CAS  Google Scholar 

  • Gill, G. A., Bloom, N. S., & Driscoll, C. T. (1999). Sediment–water fluxes of mercury in Lavaca Bay, Texas. Environmental Science & Technology, 33, 663–669.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., et al. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science and Technology, 47(20), 11810–11820. doi:10.1021/es403075t.

    Article  CAS  Google Scholar 

  • Goñi, M. A., Teixeira, M. J., & Perkeya, D. W. (2003). Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science, 57(5–6), 1023–1048. doi:10.1016/S0272-7714(03)00008-8.

    Article  Google Scholar 

  • Goulet, R. R., Holmes, J., Page, B., Poissant, L., Siciliano, S. D., Lean, D. R. S., et al. (2007). Mercury transformations and fluxes in sediments of a riverine wetland. Geochimica et Cosmochimica Acta, 71(14), 3393–3406. doi:10.1016/j.gca.2007.04.032.

    Article  CAS  Google Scholar 

  • Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environmental Science & Technology, 46(5), 2715–2723. doi:10.1021/es203658f.

    Article  CAS  Google Scholar 

  • Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environmental Science & Technology, 38(16), 4285–4292. doi:10.1021/es040359d.

    Article  CAS  Google Scholar 

  • Hamelin, S., Amyot, M., Barkay, T., Wang, Y., & Planas, D. (2011). Methanogens: principal methylators of mercury in lake periphyton. Environmental Science & Technology, 45(18), 7693–7700. doi:10.1021/es2010072.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., & Fitzgerald, W. F. (2004). Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science and Technology, 38(5), 1487–1495. doi:10.1021/es034528q.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., & Fitzgerald, W. F. (2008). Sediment–water exchange of methylmercury determined from shipboard benthic flux chambers. Marine Chemistry, 109(1–2), 86–97. doi:10.1016/j.marchem.2007.12.006.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., Fitzgerald, W. F., Balcom, P. H., & Visscher, P. T. (2008). Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Marine Chemistry, 109(1–2), 165–182. doi:10.1016/j.marchem.2008.01.007.

    Article  CAS  Google Scholar 

  • Hayter, E. J., & Mehta, A. J. (1986). Modelling cohesive sediment transport in estuarial waters. Applied Mathematical Modelling, 10(4), 294–303. doi:10.1016/0307-904X(86)90061-2.

    Article  Google Scholar 

  • Hidroprojecto (1991). Melhoria das condições de navegabilidade do Rio Tejo (Cala do Norte). Vol. I. Análise do estado de referência. Lisnoa. 191pp.

  • Hines, M. E., Poitras, E. N., Covelli, S., Faganeli, J., Emili, A., Žižek, S., & Horvat, M. (2012). Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuarine, Coastal and Shelf Science, 113, 85–95. doi:10.1016/j.ecss.2011.12.021.

    Article  CAS  Google Scholar 

  • Hintelmann, H., & Wilken, R. D. (1995). Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River: influence of seasonally and spatially varying environmental factors. Science of the Total Environment, 166(1–3), 1–10. doi:10.1016/0048-9697(95)04506-V.

    Article  CAS  Google Scholar 

  • Hollweg, T. A., Gilmour, C. C., & Mason, R. P. (2009). Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry, 114(3–4), 86–101. doi:10.1016/j.marchem.2009.04.004.

    Article  CAS  Google Scholar 

  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. doi:10.1021/es304370g.

  • Kadlecová, M., Ouddane, B., & Dočekalová, H. (2012). Speciation of mercury in the strongly polluted sediments of the Deûle River (France). Journal of Environmental Monitoring, 14, 961. doi:10.1039/c2em10561f.

    Article  Google Scholar 

  • Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., et al. (2012). Evidence on the human health effects of low-level methylmercury exposure. Environmental Health Perspectives, 120(6), 799–806. doi:10.1289/ehp.1104494.

    Article  CAS  Google Scholar 

  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. doi:10.1128/AEM.01602-06.

    Article  CAS  Google Scholar 

  • King, J. K., Kostka, J. E., & Frischer, M. E. (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments, 66(6), 2430–2437. doi:10.1128/AEM.66.6.2430-2437.2000.

  • King, J. K., Saunders, F. M., Lee, R. F., & Jahnke, R. A. (1999). Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environmental Toxicology and Chemistry, 18(7), 1362–1369. doi:10.1002/etc.5620180704.

    Article  CAS  Google Scholar 

  • Lambertsson, L., & Nilssons, M. (2006). Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environmental Science and Technology, 40(6), 1822–1829. doi:10.1021/es051785h.

    Article  CAS  Google Scholar 

  • Logar, M., Horvat, M., Akagi, H., & Pihlar, B. (2002). Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters. Analytical and Bioanalytical Chemistry, 374(6), 1015–1021. doi:10.1007/s00216-002-1501-x.

    Article  CAS  Google Scholar 

  • Loring, D. H. (1991). Normalization of heavy-metal data from estuarine and coastal sediments. ICES Journal of Marine Science: Journal du Conseil, 48(1), 101–115. doi:10.1093/icesjms/48.1.101.

    Article  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32(4), 235–283.

    Article  CAS  Google Scholar 

  • Mahaffey, K. R., Sunderland, E. M., Chan, H. M., Choi, A. L., Grandjean, P., Mariën, K., et al. (2011). Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption. Nutrition Reviews, 69(9), 493–508. doi:10.1111/j.1753-4887.2011.00415.x.

    Article  Google Scholar 

  • Marvin-Dipasquale, M., Lutz, M. A., Brigham, M. E., Krabbenhoft, D. P., Aiken, G. R., Orem, W. H., & Hall, B. D. (2009). Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning. Environmental Science and Technology, 43(8), 2726–2732. doi:10.1021/es802698v.

    Article  CAS  Google Scholar 

  • Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: a worldwide concern. Ambio: A Journal of the Human Environment, 36(1), 3–11.

    Article  CAS  Google Scholar 

  • Mikac, N., Niesse, S., & Ouddane, B. (1999). Speciation of mercury in sediments of the Seine Estuary (France). Applied Organometallic Chemistry, 13(April 2016), 715–725. doi:10.1002/(SICI)1099-0739(199910)13.

    Article  CAS  Google Scholar 

  • Mitchell, C. P. J., & Gilmour, C. C. (2008). Methylmercury production in a Chesapeake Bay salt marsh. Journal of Geophysical Research: Biogeosciences, 113(G2), 1–14. doi:10.1029/2008JG000765.

    Article  Google Scholar 

  • Nyland, J. F., Wang, S. B., Shirley, D. L., Santos, E. O., Ventura, A. M., de Souza, J. M., & Silbergeld, E. K. (2011). Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study. Environmental Research, 111(4), 584–589. doi:10.1016/j.envres.2011.02.010.

    Article  CAS  Google Scholar 

  • O’Driscoll, N. J., Canário, J., Crowell, N., & Webster, T. (2011). Mercury speciation and distribution in coastal wetlands and tidal mudflats: relationships with sulphur speciation and organic carbon. Water, Air, and Soil Pollution, 220(1–4), 313–326. doi:10.1007/s11270-011-0756-2.

    Article  Google Scholar 

  • Ogrinc, N., Monperrus, M., Kotnik, J., Fajon, V., Vidimova, K., Amouroux, D., et al. (2007). Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Marine Chemistry, 107(1), 31–48. doi:10.1016/j.marchem.2007.01.019.

    Article  CAS  Google Scholar 

  • Oliveri, E., Salvagio Manta, D., Bonsignore, M., Cappello, S., Tranchida, G., Bagnato, E., et al. (2016). Mobility of mercury in contaminated marine sediments: biogeochemical pathways. Marine Chemistry, 186, 1–10. doi:10.1016/j.marchem.2016.07.002.

    Article  CAS  Google Scholar 

  • Pizarro-Barraza, C., Gustin, M. S., Peacock, M., & Miller, M. (2014). Evidence for sites of methylmercury formation in a flowing water system: impact of anthropogenic barriers and water management. Science of the Total Environment, 478, 58–69. doi:10.1016/j.scitotenv.2014.01.081.

    Article  CAS  Google Scholar 

  • Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., et al. (2015). Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science Advances, 1(9), 1–13. doi:10.1126/sciadv.1500675.

    Article  Google Scholar 

  • Point, D., Monperrus, M., Tessier, E., Amouroux, D., Chauvaud, L., Thouzeau, G., et al. (2007). Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuarine, Coastal and Shelf Science, 72(3), 457–471. doi:10.1016/j.ecss.2006.11.013.

    Article  Google Scholar 

  • Randall, P. M., & Chattopadhyay, S. (2013). Mercury contaminated sediment sites—an evaluation of remedial options. Environmental Research, 125, 131–149. doi:10.1016/j.envres.2013.01.007.

    Article  CAS  Google Scholar 

  • Rantala, R. T. T., & Loring, D. H. (1975). Multi-element analysis of silicate rocks and marine sediments by atomic absorption spectrophotometry. Atomic absorption Newsletter, 14, 117–120.

    CAS  Google Scholar 

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319–331. doi:10.1016/j.chemosphere.2003.11.011.

    Article  CAS  Google Scholar 

  • Rimondi, V., Gray, J. E., Costagliola, P., Vaselli, O., & Lattanzi, P. (2012). Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Science of the Total Environment, 414, 318–327. doi:10.1016/j.scitotenv.2011.10.065.

    Article  CAS  Google Scholar 

  • Rothenberg, S. E., Ambrose, R. F., & Jay, J. A. (2008). Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Environmental Pollution, 154(1), 32–45. doi:10.1016/j.envpol.2007.12.013.

    Article  CAS  Google Scholar 

  • Schartup, A. T., Balcom, P. H., & Mason, R. P. (2014). Sediment-porewater partitioning, total sulfur, and methylmercury production in estuaries. Environmental Science and Technology, 48(2), 954–960. doi:10.1021/es403030d.

    Article  CAS  Google Scholar 

  • Schulz, H. D., & Zabel, M. (2000). In H. D. Schulz & M. Zabel (Eds.), Marine geochemistry (1st ed.). Heidelberg: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Singer, M. B., Harrison, L. R., Donovan, P. M., Blum, J. D., & Marvin-DiPasquale, M. (2016). Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors. Science of the Total Environment, 568, 697–711. doi:10.1016/j.scitotenv.2016.03.005.

    Article  CAS  Google Scholar 

  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—a tributary of the lower Ganga, India. Environmental Geology, 39(1), 90–98. doi:10.1007/s002540050439.

    Article  CAS  Google Scholar 

  • Tolun, L., Çağatay, M. N., & Carrigan, W. J. (2002). Organic geochemistry and origin of Late Glacial–Holocene sapropelic layers and associated sediments in Marmara Sea. Marine Geology, 190(1–2), 47–60. doi:10.1016/S0025-3227(02)00342-0.

    Article  CAS  Google Scholar 

  • Tomiyasu, T., Matsuyama, A., Eguchi, T., Fuchigami, Y., Oki, K., Horvat, M., et al. (2006). Spatial variations of mercury in sediment of Minamata Bay, Japan. Science of the Total Environment, 368(1), 283–290. doi:10.1016/j.scitotenv.2005.09.090.

    Article  CAS  Google Scholar 

  • Tsui, M. T. K., & Finlay, J. C. (2011). Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environmental Science & Technology, 45(14), 5981–5987. doi:10.1021/es200332f.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. doi:10.1080/20016491089226.

    Article  CAS  Google Scholar 

  • US-EPA (2001). Method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and cold vapor atomic fluorescence spectrometry (CV-AFS) United States, EPA-821-R-01-020, January, 1–49.

  • US-EPA (2002). Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry (CV-AFS). United States, EPA 821-R-02-019. US EPA, August, 1–46.

  • Verardo, D. J., Froelich, P. N., & McIntyre, A. (1990). Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep Sea Research Part A. Oceanographic Research Papers, 37(1), 157–165. doi:10.1016/0198-0149(90)90034-S.

    Article  CAS  Google Scholar 

  • Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., & Liu, B. (2009). Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Applied Geochemistry, 24(9), 1702–1711. doi:10.1016/j.apgeochem.2009.04.037.

    Article  CAS  Google Scholar 

  • Zagar, D., Petkovsek, G., Rajar, R., Sirnik, N., Horvat, M., Voudouri, A., et al. (2007). Modelling of mercury transport and transformations in the water compartment of the Mediterranean Sea. Marine Chemistry, 107(1), 64–88. doi:10.1016/j.marchem.2007.02.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the projects PROFLUX—Processes and Fluxes of Mercury and Methylmercury in a Contaminated Coastal Ecosystem, Tagus Estuary, Portugal (PTDC/MAR/102748/2008) PLANTA—Effect of salt-marsh plants on mercury methylation, transport and volatilization to the atmosphere (PTDC/AAC-AMB/115798/2009), Project UID/QUI/00100/2013, and by the Rute Cesário PhD grant (SFRH/BD/86441/2012), all funded by the Portuguese Foundation for Science and Technology (FCT). The authors would also like to thank to Joana Raimundo for the help in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Canário.

Electronic Supplementary Material

ESM 1

(DOCX 1263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesário, R., Hintelmann, H., O’Driscoll, N.J. et al. Biogeochemical Cycle of Mercury and Methylmercury in Two Highly Contaminated Areas of Tagus Estuary (Portugal). Water Air Soil Pollut 228, 257 (2017). https://doi.org/10.1007/s11270-017-3442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3442-1

Keywords

Navigation