Skip to main content
Log in

Implementation of Convergence in Adaptive Global Digital Image Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In FE based global digital image correlation (DIC) a finite element mesh is used to describe the deformation of the region of interest (ROI). However, the identification of an optimal mesh is a difficult problem and is often obtained by using “mechanical” pre-knowledge of the solution. In Finite Element Analysis (FEA) an optimal mesh can be found without any pre-knowledge of the solution by using mesh adaptivity, where an initial (non optimal) mesh is refined until the optimal solution is obtained. Refinement of the mesh can be based on error and/or convergence estimators. Despite the fundamental differences between FEA and DIC, in the present article the convergence procedure is successfully used in a recently published global FE based DIC method. In the used global DIC method elements can receive higher order shape functions, also known as p-elements. Using the aforementioned algorithm, also called p-DIC, refinement to a non-uniform higher order mesh is possible. Using the non-uniform mesh, an optimal mesh can be obtained for each section of the ROI. The presented study shows that a convergence scheme can be used to automatically control the mesh refinement in a global DIC approach. The convergence boundary, in percentage, is a more intuitive boundary than the absolute error boundary used in the original p-DIC approach. The procedure is validated using numerical examples and the robustness to experimental variables is investigated. Finally, the complete procedure is tested against a wide range of practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Avril S, Bonnet M, Bretelle A, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  2. Sutton M, Schreier H (2009) Image correlation for shape, motion and deformation measurements. Springer

  3. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in dic using deformation fields generated by plastic fea. Opt Lasers Eng 47:747–753

    Article  Google Scholar 

  4. Pan B (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16:7037–7048

    Article  Google Scholar 

  5. Yaofeng S, Pang JHL (2007) Study of optimal subset size in digital image correlation of speckle pattern images. Opt Lasers Eng. doi:10.1016/j.optlaseng.2007.01.012

  6. Kanade T, Okutomi M (1994) A stereo matching algorithm with an adaptive window: theory and experiment. TPAMI 16:920–9322

    Article  Google Scholar 

  7. Fusiello A, Roberto V (1997) Efficient stereo with multiple windowing. CVPR:858–863

  8. Geiger D, Ladendorf B, Yuille A (1995) Occlusions and binocular stereo. IJCV 14:211–226

    Article  Google Scholar 

  9. Intille S, Bobick A (1994) Disparity-space images and large occlusion stereo. ECCV 94:179–186

    Google Scholar 

  10. Kang S, Szeliski R, Chai J (2001) Handeling occlusions in dense multi stereo view. CVPR 1:103–110

    Google Scholar 

  11. Lava P, Cooreman S, Debruyne D (2010) Study of systematic errors in strain fields obtained via dic using heterogeneous deformation generated by plastic fea. Opt Lasers Eng 48:457–468

    Article  Google Scholar 

  12. Mortazavi F (2013) Development of a global digital image correlation approach for fast high-resolution displacement measurements, PhD thesis, Ecole Polytechnique de Montreal

  13. Langerholc M, Slavic J, Boltezar M (2012) Absolute nodal coordinates in digital image correlation. Exp Mech 53:807–818

    Article  Google Scholar 

  14. Hild F, Roux S, Gras R, Guerrero N, Marante ME, Florez-Lopezc J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47:495–503

    Article  Google Scholar 

  15. Cheng P, Sutton MA, Schreier HW, McNeill SR (2002) Full-field speckle pattern image correlation with b-spline defromation function. Exp Mech 42:344–352

    Article  Google Scholar 

  16. Liu ZW, Gao JX (2011) Deformation-pattern-based digital speckle correlation for coefficient of thermal expansion evaluation of film. Opt Express 19(18):17469–17479

    Article  Google Scholar 

  17. Besnard G, Hild, Roux S (2006) “finite-element” displacement field analysis from digital images. Exp Mech 46:789–803

    Article  Google Scholar 

  18. Babuska I, Whiteman JR, Strouboulis T (2011) Finite elements. An introduction to the method and error estimation. Oxford University press

  19. Bornert M, Bremand F, Doumalin P, Dupre JC, Fazzini M, Grediac M, Hild F, Roux S, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel P, Vacher Y, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370

    Article  Google Scholar 

  20. Wittevrongel L, Lava P, Lomov SV, Debruyne D (2014) A self adaptive global digital image correlation algorithm. Exp Mech. doi:10.1007/s11340-014-9946-3

  21. Pan B (2010) Recent progress in digital image correlation. Exp Mech 51:1223–1235

    Article  Google Scholar 

  22. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41:167–175

    Article  Google Scholar 

  23. Zienkiewicz OC, Taylor RL (2000) The finite element method. The basis, vol 1

  24. Szabo B, Babuska I (1991) Finite element. Wiley

  25. Zienkiewicz O. (1991) Adaptivity and mesh generation. Int J Numer Methods Eng 32:783–810

    Article  MathSciNet  MATH  Google Scholar 

  26. Szabo B, Duster A., Rank E (2004) The p-version of the finite element method. Encyclopedia of Computational Mechanics

  27. Hild F, Roux S (2011) Comparison of local and global approaches to digital image correlation. Exp Mech 52:1503–1519

    Article  Google Scholar 

  28. Bathe KJ (1996) Finite element procedures. Asoke K. Ghosh, Prentice-Hall of India

    MATH  Google Scholar 

  29. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle ppattern dor digital image correlation. Opt Lasers Eng 44:1132–1145

    Article  Google Scholar 

  30. Hua T., Xie H, S Wang Z Hu, Chen P, Zhang Q (2011) Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Opt Laser Technol 43(1):9–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wittevrongel.

Additional information

This publication was supported by Agency for Innovation by Science and Technology in Flanders (IWT).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittevrongel, L., Debruyne, D., Lomov, S.V. et al. Implementation of Convergence in Adaptive Global Digital Image Correlation. Exp Mech 56, 797–811 (2016). https://doi.org/10.1007/s11340-016-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0126-5

Keywords

Navigation