Skip to main content

Advertisement

Log in

Quasi-Static Four-Point Bend Testing of Macro-Fiber Composite Unimorphs

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This research examines the application of Macro-Fiber Composites on substrate materials in the form of unimorph actuators. The intent is to characterize the behavior of the unimorphs and to gain an understanding of the load bearing capacity as a function of the substrate. The results indicate that thin substrates, on the order of 0.1 mm, with a high modulus, on the order of 200 GPa or more, provide the largest displacements and load bearing capacity. Both classical laminate plate theory and experimental results are used to support this conclusion. The experimental tests used a four point bend setup to load the unimorphs through their entire range of deflection and quantified their load bearing capacity throughout this range. These results were compared to Classical Laminate Plate Theory, in terms of loading and curvature, with good agreement. The primary application of this research is for use on small unmanned vehicles, but these results can be expanded to other Macro-Fiber Composite applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bilgen O, Erturk A, Inman DJ (2010) Analytical and experimental characterization of macro-fiber composite actuated thin clamped-free unimorph benders. J Vib Acoust 132:051005. doi:10.1115/1.4001504

    Article  Google Scholar 

  2. Cadogan D, Smith T, Uhelsky F et al (2004) Morphing Inflatable Wing Development for Compact Package Unmanned Aerial Vehicles. 45th AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf. Palm Springs, California, pp 1–13

  3. Wilkie WK, Bryant RG, High JW et al (2000) Low-cost piezocomposite actuator for structural control applications. Smart Struct Mater 2000 Ind Commer Appl Smart Struct Technol Bremen, Germany, pp 323–334

  4. High J, Wilkie W (2003) Method of fabricating NASA-standard Macro-Fiber Composite piezoelectric actuators, 2003–21242nd edn. NASA, Langley Research Center, Hampton

    Google Scholar 

  5. (2012) Macro fiber composite actuators. In: Smart Mater. Corp. www.smart-material.com. Accessed 28 Mar 2012

  6. Wilkie W, Belvin W, Park K (1996) Aeroelastic analysis of helicopter rotor blades incorporating anisotropic piezoelectric twist actuation. ASME 1996 World Congr Expo Adapt Struct Symp Proc Aerosp Div pp 1–11

  7. Moses W (1997) Vertical tail buffeting piezoelectric actuators alleviation using - Some results of the Actively Controlled Response Buffet-Affected Tails (ACROBAT) Program. Hampton

  8. Wickramasinghe V, Chen Y, Zimcik D (2007) experimental evaluation of an advanced buffet suppression system on full scale F/A-18 Fin. J Aircr 44:733–740. doi:10.2514/1.25328

    Article  Google Scholar 

  9. Galea SC, Ryall TG, Henderson DA, Zimcik DG (2003) Next generation active buffet suppression system. AIAA Pap. 2905

  10. Bilgen O, Kochersberger K, Diggs EC et al (2007) Morphing wing micro-air-vehicles via macro-fiber- composite actuators. 48th AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf Honolulu, Hawaii, pp 1–16

  11. Ohanian III O, Hickling C, Stiltner B (2012) Piezoelectric morphing versus servo-actuated MAV control surfaces. 53rd AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf Honolulu, Hawaii, pp 1–18

  12. Ohanian III OJ, David BM, Taylor SL et al (2013) Piezoelectric Morphing versus Servo-Actuated MAV Control Surfaces, Part II: Flight Testing. 51st AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp. Expo. AIAA, Grapevine, TX, pp 1–20

  13. Paradies R, Ciresa P (2009) Active wing design with integrated flight control using piezoelectric Macro Fiber Composites. Smart Mater Struct 18:035010. doi:10.1088/0964-1726/18/3/035010

    Article  Google Scholar 

  14. Barrett R, Vos R, Tiso P, Breuker R De (2005) Post-Buckled Precompressed(PBP) Actuators- Enhancing VTOL Autonomous High Speed MAVs. 46 th AIAA/ASME/ASCE/AHS/ASC …. Austin, TX, pp 1–13

  15. Vos R, Barrett R, De Breuker R, Tiso P (2007) Post-buckled precompressed elements: a new class of control actuators for morphing wing UAVs. Smart Mater Struct 16:919–926. doi:10.1088/0964-1726/16/3/042

    Article  Google Scholar 

  16. Barrett R, Gross RS, Brozoski F (1996) Missile flight control using active flexspar actuators. Smart Mater Struct 5:121–128. doi:10.1088/0964-1726/5/2/002

    Article  Google Scholar 

  17. Barrett R, McMurtry R, Vos R et al (2006) Post-buckled precompressed piezoelectric flight control actuator design, development and demonstration. Smart Mater Struct 15:1323–1331. doi:10.1088/0964-1726/15/5/022

    Article  Google Scholar 

  18. Schultz MR (2003) Use of piezoelectric actuators to effect snap-through behavior of unsymmetric composite laminates. Virginia Tech

  19. Schultz M, Hyer M (2004) A morphing concept based on unsymmetric composite laminates and piezoceramic MFC actuators. 45th AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf

  20. Bilgen O, Kurdila AJ, Inman DJ et al (2007) Macro fiber composite actuated unmanned air vehicles : design, development, and testing. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  21. Yoon KJ, Shin S, Park HC, Goo NS (2002) Design and manufacture of a lightweight piezo-composite curved actuator. Smart Mater Struct 11:163–168. doi:10.1088/0964-1726/11/1/401

    Article  Google Scholar 

  22. Goo NS (2005) Validation of a laminated beam model of LIPCA Piezoelectric Actuators. J Intell Mater Syst Struct 16:189–195. doi:10.1177/1045389X05048043

    Article  Google Scholar 

  23. Gibson RF (2007) Principles of composite material mechanics, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  24. Bilgen O, Friswell MI, Inman DJ (2011) Theoretical and experimental analysis of hysteresis in piezocomposite airfoils using Preisach model. J Aircr 48:1935–1947. doi:10.2514/1.C031374

    Article  Google Scholar 

  25. Bilgen O, Kochersberger KB, Inman DJ, Ohanian OJ III (2010) Macro-Fiber Composite actuated simply supported thin airfoils. Smart Mater Struct 19:055010. doi:10.1088/0964-1726/19/5/055010

    Article  Google Scholar 

  26. Zareinejad M, Razi K, Seifabadi R (2007) Hysteresis compensation of piezoelectric actuators under dynamic load condition. IEEE/RSJ Int Conf Intell Robot Syst 2007:1166–1171. doi:10.1109/IROS.2007.4399048

    Google Scholar 

  27. Mitrovic M, Carman GP, Straub FK (2001) Response of piezoelectric stack actuators under combined electro-mechanical loading. Int J Solids Struct 38:4357–4374. doi:10.1016/S0020-7683(00)00273-0

    Article  MATH  Google Scholar 

  28. Georgiou HMS, Mrad RB (2006) Electromechanical modeling of piezoceramic actuators for dynamic loading applications. J Dyn Syst Meas Control 128:558. doi:10.1115/1.2234486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. LaCroix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaCroix, B., Ifju, P. Quasi-Static Four-Point Bend Testing of Macro-Fiber Composite Unimorphs. Exp Mech 54, 1139–1149 (2014). https://doi.org/10.1007/s11340-014-9884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9884-0

Keywords

Navigation