Skip to main content
Log in

Carbon fiber–aluminum sandwich for micro-aerial vehicles and miniature robots

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We present carbon-fiber and aluminum sandwich plates with millimeter thicknesses that exhibit high stiffness- and strength-to-weight ratios. These composites consist of carbon-fiber-reinforced polymer faces and waterjet-cut aluminum cores, bonded using epoxy. Relative to single-ply carbon-fiber-reinforced polymer sheets, this construction provides 22-fold increases in mass-specific flexural rigidity and 18-fold increases in mass-specific flexural strength, with areal densities of only 120–260 mg/cm2. Our work represents a simple and inexpensive platform for creating extremely lightweight structural components for microflyers and small robots.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this manuscript and supplementary information.

References

  1. M. Russo, M. Ceccarelli, Robotics 9, 2 (2020). https://doi.org/10.3390/robotics9020032

    Article  Google Scholar 

  2. X. Huang, Materials (Basel) 2, 2369 (2009). https://doi.org/10.3390/ma2042369

    Article  CAS  Google Scholar 

  3. S. Ekşi, K. Genel, Acta Phys. Pol. A 132, 879 (2017). https://doi.org/10.12693/APhysPolA.132.879

    Article  Google Scholar 

  4. Z. Hou, X. Tian, J. Zhang, L. Zhe, Z. Zheng, D. Li, A.V. Malakhov, A.N. Polilov, Compos. Struct. 237, (2020). https://doi.org/10.1016/j.compstruct.2020.111945

    Article  Google Scholar 

  5. C.S.X. Ng, M.W.M. Tan, C. Xu, Z. Yang, P.S. Lee, G.Z. Lum, Adv. Mater. (2020). https://doi.org/10.1002/adma.202003558

    Article  Google Scholar 

  6. V. Birman, G.A. Kardomateas, Compos. B Eng. 142, 221 (2018). https://doi.org/10.1016/j.compositesb.2018.01.027

    Article  CAS  Google Scholar 

  7. B. Castanie, C. Bouvet, M. Ginot, Compos. Part C 1, 100004 (2020). https://doi.org/10.1016/j.jcomc.2020.100004

    Article  Google Scholar 

  8. B. Kiyak, M.O. Kaman, J. Compos. Mater. 53, 3093 (2018). https://doi.org/10.1177/0021998318810899

    Article  Google Scholar 

  9. J. Xiong, A. Vaziri, R. Ghosh, H. Hu, L. Ma, L. Wu, Extreme Mech. Lett. 7, 114 (2016). https://doi.org/10.1016/j.eml.2016.02.012

    Article  Google Scholar 

  10. J. Mei, J. Liu, J. Liu, Compos. A 102, 28 (2017). https://doi.org/10.1016/j.compositesa.2017.07.020

    Article  CAS  Google Scholar 

  11. S. Shi, Z. Sun, X. Hu, H. Chen, Thin-Walled Struct. 84, 416 (2014). https://doi.org/10.1016/j.tws.2014.07.015

    Article  Google Scholar 

  12. F. Arias, P.J.A. Kenis, B. Xu, T. Deng, O.J.A. Schueller, G.M. Whitesides, Y. Sugimura, A.G. Evans, J. Mater. Res. 16, 597 (2011). https://doi.org/10.1557/JMR.2001.0086

    Article  Google Scholar 

  13. D.H. Choi, Y.C. Jeong, K. Kang, Acta Mater. 144, 822 (2018). https://doi.org/10.1016/j.actamat.2017.11.045

    Article  CAS  Google Scholar 

  14. J.A. Kolodziejska, C.S. Roper, S.S. Yang, W.B. Carter, A.J. Jacobsen, APL Mater. 3, (2015). https://doi.org/10.1063/1.4921160

    Article  CAS  Google Scholar 

  15. U. Tamilarasan, L. Karunamoorthy, K. Palanikumar, Mater. Res. 18, 1029 (2015)

    Article  CAS  Google Scholar 

  16. W.D. Callister, Materials Science and Engineering: An Introduction, 7th edn. (Wiley, New York, 2007)

    Google Scholar 

  17. W. Cha, M.F. Campbell, G.A. Popov, C.H. Stanczak, A.K. Estep, E.B. Steager, C.R. Sung, M.H. Yim, I. Bargatin, J. Microelectromech. Syst. 29, 1127 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Singh Center staff for technical assistance and discussions, including J. Gilinger, E. Johnston, D. Jones, M. Metzler, M. Brukman, J. Ford, and H. Yamamoto. They also wish to thank P. Bruno for assistance in mechanical testing setup. This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-19-C-0052. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the DARPA. Approved for Public Release, Distribution Unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujoon Cha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, W., Kasper, L., Campbell, M.F. et al. Carbon fiber–aluminum sandwich for micro-aerial vehicles and miniature robots. MRS Advances 6, 477–481 (2021). https://doi.org/10.1557/s43580-021-00084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00084-3

Navigation