Skip to main content
Log in

Digital Image Correlation with Self-Adaptive Gaussian Windows

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A novel subpixel registration algorithm with Gaussian windows is put forward for accurate deformation measurement in digital image correlation technique. Based on speckle image quality and potential deformation states, this algorithm can automatically minimize the influence of subset sizes by self-adaptively tuning the Gaussian window shapes with the aid of a so-called weighted sum-of-squared difference correlation criterion. Numerical results of synthetic speckle images undergoing in-plane sinusoidal displacement fields demonstrate that the proposed algorithm can significantly improve displacement and strain measurement accuracy especially in the case with relatively large deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Sutton MA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. Springer, New York

    Google Scholar 

  2. Hild F, Roux S (2006) Digital image correlation: From displacement measurement to identification of elastic properties - a review. Strain 42(2):69–80

    Article  Google Scholar 

  3. Pan B, Qian KM, Xie HM, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas Sci Technol 20(6):062001

    Article  Google Scholar 

  4. Lu H, Cary PD (2000) Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Exp Mech 40(4):393–400

    Article  Google Scholar 

  5. Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921

    Article  Google Scholar 

  6. Tong W (2011) Subpixel image registration with reduced bias. Opt Lett 36(5):763–765

    Article  Google Scholar 

  7. Cofaru C, Philips W, Van Paepegem W (2010) Improved Newton–Raphson digital image correlation method for full-field displacement and strain calculation. Appl Optics 49(33):6472–6484

    Article  Google Scholar 

  8. Huang JY, Zhu T, Pan XC, Qin L, Peng XL, Xiong CY, Fang J (2010) A high-efficiency digital image correlation method based on a fast recursive scheme. Meas Sci Technol 21(3):035101

    Article  Google Scholar 

  9. Luu L, Wang ZY, Vo M, Hoang T, Ma J (2011) Accuracy enhancement of digital image correlation with B-spline interpolation. Opt Lett 36(16):3070–3072

    Article  Google Scholar 

  10. Huang JY, Pan XC, Peng XL, Zhu T, Qin L, Xiong CY, Fang J (2010) High-efficiency cell-substrate displacement acquisition via digital image correlation method using basis functions. Opt Lasers Eng 48(11):1058–1066

    Article  Google Scholar 

  11. Bornert M, Bremand F, Doumalin P, Dupre JC, Fazzini M, Grediac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: Methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  12. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44(11):1132–1145

    Article  Google Scholar 

  13. Yaofeng S, Pang J (2007) Study of optimal subset size in digital image correlation of speckle pattern images. Opt Lasers Eng 45(9):967–974

    Article  Google Scholar 

  14. Pan B, Xie HM, Wang ZY, Qian KM, Wang ZY (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16(10):7037–7048

    Article  Google Scholar 

  15. Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46(2):185–196

    Article  Google Scholar 

  16. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt Lasers Eng 47(7):747–753

    Article  Google Scholar 

  17. Fazzini M, Mistou S, Dalverny O, Robert L (2010) Study of image characteristics on digital image correlation error assessment. Opt Lasers Eng 48(3):335–339

    Article  Google Scholar 

  18. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42(3):303–310

    Article  Google Scholar 

  19. Bruck HA, Mcneill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial-differential correction. Exp Mech 29(3):261–267

    Article  Google Scholar 

  20. Vendroux G, Knauss WG (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation. Exp Mech 38(2):86–92

    Article  Google Scholar 

  21. Lava P, Cooreman S, Debruyne D (2010) Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA. Opt Lasers Eng 48(4):457–468

    Article  Google Scholar 

  22. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes: The Arts of Scientific Computing. Cambridge University Press, Cambridge

    Google Scholar 

  23. Huang JY, Peng XL, Qin L, Zhu T, Xiong CY, Zhang YY, Fang J (2009) Determination of cellular tractions on elastic substrate based on an integral Boussinesq solution. J Biomech Eng-Trans ASME 131(6):061009

    Article  Google Scholar 

  24. Huang JY, Qin L, Peng XL, Zhu T, Xiong CY, Zhang YY, Fang J (2009) Cellular traction force recovery: An optimal filtering approach in two-dimensional Fourier space. J Theor Biol 259(4):811–819

    Article  Google Scholar 

  25. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41(4):167–175

    Article  Google Scholar 

Download references

Acknowledgments

The work reported here is supported by the National Basic Research Program of China (Grant No. 2011CB809106) and the National Natural Science Foundation of China (Grant Nos. 11002003 and 11072004). Also, the authors are highly grateful to these anonymous reviewers for their helpful comments and suggestions, which have remarkably improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Xiong.

Appendices

Appendix A

For the Gaussian window function adopted in the manuscript, on the one hand, one may easily realize the following expressions

$$ \left\{ {\begin{array}{*{20}{c}} \hfill {\frac{{\partial {{W}_{G}}\left( {X,Y;{{D}_{0}}} \right)}}{{\partial {{p}_{7}}}} = \frac{{\partial {{W}_{G}}\left( {X,Y;{{D}_{0}}} \right)}}{{\partial {{D}_{0}}}} = {{W}_{G}}\left( {X,Y;{{D}_{0}}} \right) \times {{D}^{2}}\left( {X,Y} \right)/D_{0}^{3}} \\ \hfill {\frac{{\partial {{W}_{G}}\left( {x,y;{{D}_{0}}} \right)}}{{\partial {{p}_{7}}}} = \frac{{\partial {{W}_{G}}\left( {x,y;{{D}_{0}}} \right)}}{{\partial {{D}_{0}}}} = {{W}_{G}}\left( {x,y;{{D}_{0}}} \right) \times {{D}^{2}}\left( {x,y} \right)/D_{0}^{3}} \\ \end{array} } \right. $$
(A.1)

with \( D\left( {X,Y} \right) = \sqrt {{{{{\left( {X - {{X}_0}} \right)}}^2} + {{{\left( {Y - {{Y}_0}} \right)}}^2}}} \), \( D\left( {x,y} \right) = \sqrt {{{{{\left( {x - {{x}_0}} \right)}}^2} + {{{\left( {y - {{y}_0}} \right)}}^2}}} \), \( {{x}_0} = {{X}_0} + u \) and \( {{y}_0} = {{Y}_0} + v \). In combination with equation (2), on the other hand, one may find that

$$ \matrix{ {\frac{\partial }{{\partial {{p}_1}}}\left[ {{{W}_G}\left( {x,y;{{D}_0}} \right)} \right] = \frac{\partial }{{\partial u}}\left\{ {\exp \left[ {\frac{{ - {{D}^2}\left( {x,y} \right)}}{{2D_0^2}}} \right]} \right\}} \\ { = \frac{\partial }{{\partial u}}\left\{ {\exp \left[ { - \frac{{{{{\left( {x - {{x}_0}} \right)}}^2} + {{{\left( {y - {{y}_0}} \right)}}^2}}}{{2D_0^2}}} \right]} \right\}} \\ { = \frac{\partial }{{\partial u}}\left\{ {\exp \left[ { - \frac{{{{{\left[ {\left( {1 + \frac{{\partial u}}{{\partial X}}} \right)\left( {X - {{X}_0}} \right) + \frac{{\partial u}}{{\partial Y}}\left( {Y - {{Y}_0}} \right)} \right]}}^2} + {{{\left[ {\frac{{\partial v}}{{\partial X}}\left( {X - {{X}_0}} \right) + \left( {1 + \frac{{\partial v}}{{\partial Y}}} \right)\left( {Y - {{Y}_0}} \right)} \right]}}^2}}}{{2D_0^2}}} \right]} \right\}} \\ { = 0} \\ }<!end array> $$
(A.2)
$$ \matrix{ {\frac{\partial }{{\partial {{p}_2}}}\left[ {{{W}_G}\left( {x,y;{{D}_0}} \right)} \right] = \frac{\partial }{{\partial \left( {\frac{{\partial u}}{{\partial X}}} \right)}}\left\{ {\exp \left[ {\frac{{ - {{D}^2}\left( {x,y} \right)}}{{2D_0^2}}} \right]} \right\}} \\ { = \frac{{ - {{W}_G}\left( {x,y;{{D}_0}} \right)}}{{2D_0^2}}\frac{{\partial \left[ {{{D}^2}\left( {x,y} \right)} \right]}}{{\partial \left( {\frac{{\partial u}}{{\partial X}}} \right)}}} \\ { = \frac{{ - {{W}_G}\left( {x,y;{{D}_0}} \right)}}{{D_0^2}}\left[ {\left( {1 + \frac{{\partial u}}{{\partial X}}} \right)\left( {X - {{X}_0}} \right) + \frac{{\partial u}}{{\partial Y}}\left( {Y - {{Y}_0}} \right)} \right]\left( {X - {{X}_0}} \right)} \\ }<!end array> $$
(A.3)
$$ \matrix{ {\frac{\partial }{{\partial {{p}_3}}}\left[ {{{W}_G}\left( {x,y;{{D}_0}} \right)} \right] = \frac{\partial }{{\partial \left( {\frac{{\partial u}}{{\partial Y}}} \right)}}\left\{ {\exp \left[ {\frac{{ - {{D}^2}\left( {x,y} \right)}}{{2D_0^2}}} \right]} \right\}} \\ { = \frac{{ - {{W}_G}\left( {x,y;{{D}_0}} \right)}}{{2D_0^2}}\frac{{\partial \left[ {{{D}^2}\left( {x,y} \right)} \right]}}{{\partial \left( {\frac{{\partial u}}{{\partial Y}}} \right)}}} \\ { = \frac{{ - {{W}_G}\left( {x,y;{{D}_0}} \right)}}{{D_0^2}}\left[ {\left( {1 + \frac{{\partial u}}{{\partial X}}} \right)\left( {X - {{X}_0}} \right) + \frac{{\partial u}}{{\partial Y}}\left( {Y - {{Y}_0}} \right)} \right]\left( {Y - {{Y}_0}} \right)} \\ }<!end array> $$
(A.4)

In a similar way, one can further obtain that

$$ \frac{\partial }{{\partial {{p}_4}}}\left[ {{{W}_G}\left( {x,y;{{D}_0}} \right)} \right] = \frac{\partial }{{\partial v}}\left\{ {\exp \left[ {\frac{{ - {{D}^2}\left( {x,y} \right)}}{{2D_0^2}}} \right]} \right\} = 0 $$
(A.5)
$$ \matrix{ {\frac{\partial }{{\partial {{p}_5}}}\left[ {{{W}_G}\left( {x,y;{{D}_0}} \right)} \right] = \frac{\partial }{{\partial \left( {\frac{{\partial v}}{{\partial X}}} \right)}}\left\{ {\exp \left[ {\frac{{ - {{D}^2}\left( {x,y} \right)}}{{2D_0^2}}} \right]} \right\}} \\ { = \frac{{ - {{W}_G}\left( {x,y;{{D}_0}} \right)}}{{D_0^2}}\left[ {\frac{{\partial v}}{{\partial X}}\left( {X - {{X}_0}} \right) + \left( {1 + \frac{{\partial v}}{{\partial Y}}} \right)\left( {Y - {{Y}_0}} \right)} \right]\left( {X - {{X}_0}} \right)} \\ }<!end array> $$
(A.6)
$$ \matrix{ {\frac{\partial }{{\partial {{p}_6}}}\left[ {{{W}_G}\left( {x,y;{{D}_0}} \right)} \right] = \frac{\partial }{{\partial \left( {\frac{{\partial v}}{{\partial Y}}} \right)}}\left\{ {\exp \left[ {\frac{{ - {{D}^2}\left( {x,y} \right)}}{{2D_0^2}}} \right]} \right\}} \\ { = \frac{{ - {{W}_G}\left( {x,y;{{D}_0}} \right)}}{{D_0^2}}\left[ {\frac{{\partial v}}{{\partial X}}\left( {X - {{X}_0}} \right) + \left( {1 + \frac{{\partial v}}{{\partial Y}}} \right)\left( {Y - {{Y}_0}} \right)} \right]\left( {Y - {{Y}_0}} \right)} \\ }<!end array> $$
(A.7)

Appendix B

Around a specified point of interest (X S0, Y S0) located on the reference image as shown in Fig. 6, a square region with Q × Q pixels, usually called “strain window”, is selected, on which N × Ndiscrete displacement sampling points are beforehand chosen based on a regular sampling spacing L, while their displacement values are calculated via these above-mentioned iterative algorithms. For simplification, we employ a bilinear Lagrange polynomial [21] to mathematically fit the local displacement field involved in the specific strain window, which may be expressed as

$$ \left\{ {\begin{array}{*{20}{c}} {{{u}^{{fit}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right) = {{a}_{1}} + {{a}_{3}}{{X}_{{Sj}}} + {{a}_{5}}{{Y}_{{Sl}}} + {{a}_{7}}{{X}_{{Sj}}}{{Y}_{{Sl}}}} \hfill \\ {{{v}^{{fit}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right) = {{a}_{2}} + {{a}_{4}}{{X}_{{Sj}}} + {{a}_{6}}{{Y}_{{Sl}}} + {{a}_{8}}{{X}_{{Sj}}}{{Y}_{{Sl}}}} \hfill \\ \end{array} } \right. $$
(B.1)

where \( {{\bf u}^{{fit}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right) = {{\left[ {{{u}^{{fit}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right), {{v}^{{fit}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right)} \right]}^T} \) denotes the fitted displacement vector on the discrete sampling position (X Sj , Y Sl ) with \( - {{{\left( {N - 1} \right)}} \left/ {2} \right.} \leqslant j,l \leqslant {{{\left( {N - 1} \right)}} \left/ {2} \right.} \) (Notice that, for convenience, we here always set N to be an odd number greater than 1). In the sense of least squares, we can easily figure out the analytical expressions of the fitting coefficients, i.e., a 1, a 2, …, a 8, with the help of the cost function [21]

$$ E\left( {{{a}_1},{{a}_2},...,{{a}_8}} \right) = \sum\limits_{{j,l = - \frac{{N - 1}}{2}}}^{{\frac{{N - 1}}{2}}} {{{{\left| {{{u}^{{fit}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right) - {{u}^{{dic}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right)} \right|}}^2}} $$
(B.2)

where \( {{{{\bf u}}}^{{dic}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right) = {{\left[ {{{u}^{{dic}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right), {{v}^{{dic}}}\left( {{{X}_{{Sj}}},{{Y}_{{Sl}}}} \right)} \right]}^T} \) refers to the corresponding displacement vector numerically calculated by the conventional NR method or the proposed algorithm with self-adaptive Gaussian windows. In this way, the strain components on the specified point of interest (X S0, Y S0) can readily be derived from equation (B.1) as

$$ \left\{ {\begin{array}{*{20}{c}} {\left( {\frac{{\partial u}}{{\partial X}}} \right)_{{\left( {{{X}_{{Sj,}}}{{Y}_{{Sl}}}} \right)}}^{{fit}} = {{a}_{3}} + {{a}_{7}}{{Y}_{{Sl}}}} \\ {\left( {\frac{{\partial u}}{{\partial Y}}} \right)_{{\left( {{{X}_{{Sj,}}}{{Y}_{{Sl}}}} \right)}}^{{fit}} = {{a}_{5}} + {{a}_{7}}{{X}_{{Sj}}}} \\ {\left( {\frac{{\partial v}}{{\partial X}}} \right)_{{\left( {{{X}_{{Sj,}}}{{Y}_{{Sl}}}} \right)}}^{{fit}} = {{a}_{4}} + {{a}_{8}}{{Y}_{{Sl}}}} \\ {\left( {\frac{{\partial v}}{{\partial Y}}} \right)_{{\left( {{{X}_{{Sj,}}}{{Y}_{{Sl}}}} \right)}}^{{fit}} = {{a}_{6}} + {{a}_{8}}{{X}_{{Sj}}}} \\ \end{array} } \right. $$
(B.3)

By means of the strain-window method in which the parameters, L and N , were specifically set as 2 pixels and 5, respectively, we recalculated the strain fields from the same synthetic speckle images as described in the preceding section, based upon the displacement data acquired by the traditional NR method and those obtained via the proposed algorithm with Gaussian windows. The corresponding results were shown in Fig. 7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Pan, X., Peng, X. et al. Digital Image Correlation with Self-Adaptive Gaussian Windows. Exp Mech 53, 505–512 (2013). https://doi.org/10.1007/s11340-012-9639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9639-8

Keywords

Navigation