Skip to main content
Log in

Computational Analysis of a Cross-linked Actin-like Network

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Gels formed from G-actin or other filament-forming monomers exhibit a range of morphologies that differ widely in terms of pore size, fiber diameter, degree of isotropy, and frequency of cross-linking or branching. These characteristics are determined, in large part, by the nature and concentration of the proteins that form cross-links between single filaments, yet little is known how filament-forming monomers and cross-linkers assemble to generate a particular network morphology. Some of the important attributes of a cross-linker are the spatial and angular orientation of its two filament binding sites, its size, and stiffness to both rotation and extension. Here, we introduce a Brownian dynamics (BD) simulation model in three dimensions in which actin monomers polymerize and become cross-linked by two types of cross-linking molecules that form either parallel filament bundles or perpendicular cross-links. We analyze the effects of various system parameters on the growth and morphology of the resulting network. Some scaling behaviors emerge that are insensitive to the detailed choice of parameters. Our model thus has the potential as a base BD model that can be further refined for investigating various actin-related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  2. Lodish H, et al (2003) Molecular cell biology, 5th edn. W. H. Freeman and Company, New York, NY.

    Google Scholar 

  3. Sept D, McCammon JA (2001) Thermodynamics and kinetics of actin filament nucleation. Biophys J 81(2):667–674.

    Article  Google Scholar 

  4. Cooper JA, et al (1983) Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry 22(9):2193–2202.

    Article  Google Scholar 

  5. Mofrad MRK, Kamm RD (2006) Cytoskeletal mechanics: Models and measurements. Cambridge University Press, New York, NY.

    Google Scholar 

  6. Kreis T, Vale R (1999) Guidebook to the cytoskeletal and motor proteins, 2nd edn. Oxford University Press, New York, NY.

    Google Scholar 

  7. Le Y, Sept D, Carlsson AE (2006) Energetics and dynamics of constrained actin filament bundling. Biophys J 90(12):4295–4304.

    Article  Google Scholar 

  8. Chu JW, Voth GA (2005) Allostery of actin filaments: Molecular dynamics simulations and coarse-grained analysis. P Natl Acad Sci USA 102(37):13111–13116.

    Article  Google Scholar 

  9. Chu JW, Voth GA (2006) Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys J 90(5):1572–1582.

    Article  Google Scholar 

  10. Sept D, Elcock AH, McCammon JA (1999) Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry. J Mol Biol 294(5):1181–1189.

    Article  Google Scholar 

  11. Carlsson AE (2006) Stimulation of actin polymerization by filament severing. Biophys J 90(2):413–422.

    Article  Google Scholar 

  12. Yu XP, Carlsson AE (2003) Multiscale study of counterion-induced attraction and bundle formation of F-actin using an ising-like mean-field model. Biophys J 85(6):3532–3543.

    Article  Google Scholar 

  13. Yu XP, Carlsson AE (2004) Kinetics of filament bundling with attractive interactions. Biophys J 87(6):3679–3689.

    Article  Google Scholar 

  14. Atilgan E, Wirtz D, Sun SX (2006) Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys J 90(1):65–76.

    Article  Google Scholar 

  15. Gov NS, Gopinathan A (2006) Dynamics of membranes driven by actin polymerization. Biophys J 90(2):454–469.

    Article  Google Scholar 

  16. Shlomovitz R, Gov NS (2007) Membrane waves driven by actin and myosin. Phys Rev Lett 98(16):168103-1–168103-4.

    Article  Google Scholar 

  17. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, New York, NY.

    Google Scholar 

  18. Underhill PT, Doyle PS (2004) On the coarse-graining of polymers into bead-spring chains. J Non-Newton Fluid Mech 122(1–3):3–31.

    Article  MATH  Google Scholar 

  19. Liao Q, Dobrynin AV, Rubinstein M (2003) Molecular dynamics simulations of polyelectrolyte solutions: Nonuniform stretching of chains and scaling behavior. Macromolecules 36(9):3386–3398.

    Article  Google Scholar 

  20. Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin-filaments with and without tropomyosin by in-vitro nanomanipulation. P Natl Acad Sci USA 91(26):12962–12966.

    Article  Google Scholar 

  21. Higuchi H, Yanagida T, Goldman YE (1995) Compliance of thin-filaments in skinned fibers of rabbit skeletal-muscle. Biophys J 69(3):1000–1010.

    Article  Google Scholar 

  22. Isambert H et al (1995) Flexibility of actin-filaments derived from thermal fluctuations-effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270(19):11437–11444.

    Article  Google Scholar 

  23. Gittes F et al (1993) Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J Cell Biol 120(4):923–934.

    Article  Google Scholar 

  24. Tsuda Y et al (1996) Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. P Natl Acad Sci USA 93(23):12937–12942.

    Article  Google Scholar 

  25. Yasuda R, Miyata H, Kinosita K (1996) Direct measurement of the torsional rigidity of single actin filaments. J Mol Biol 263(2):227–236.

    Article  Google Scholar 

  26. Holmes KC et al (1990) Atomic model of the actin filament. Nature 347(6288):44–49.

    Article  Google Scholar 

  27. Pollard TD (1986) Rate constants for the reactions of Atp–actin and Adp–actin with the ends of actin-filaments. J Cell Biol 103(6):2747–2754.

    Article  Google Scholar 

  28. Bell GI (1978) Models for specific adhesion of cells to cells. Science 200(4342):618–627.

    Article  Google Scholar 

  29. Damköhler G (1939) Stromungs und warmeubergangsprobleme in chemischer technik and forschung. Chem Ing Tech 12:469.

    Google Scholar 

  30. Forgacs G (1995) On the possible role of cytoskeletal filamentous networks in intracellular signaling—an approach based on percolation. J Cell Sci 108:2131–2143.

    Google Scholar 

  31. Nakayama T, Yakubo K, Orbach RL (1994) Dynamical properties of fractal networks-scaling, numerical simulations, and physical realizations. Rev Mod Phys 66(2):381–443.

    Article  Google Scholar 

  32. Head DA, Levine AJ, MacKintosh EC (2003) Deformation of cross-linked semiflexible polymer networks. Phys Rev Lett 91(10): 108102-1–108102-4.

    Google Scholar 

  33. Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68(6): 061907-1–061907-15.

    Google Scholar 

  34. Volkmann N, et al (2001) An atomic model of actin filaments cross-linked by fimbrin and its implications for bundle assembly and function. J Cell Biol 153(5):947–956.

    Article  Google Scholar 

  35. Wagner B, et al (2006) Cytoskeletal polymer networks: The molecular structure of cross-linkers determines macroscopic properties. P Natl Acad Sci USA 103(38):13974–13978.

    Article  Google Scholar 

  36. Claessens MMAE, et al (2006) Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat Mater 5(9):748–753.

    Article  Google Scholar 

  37. Dalhaimer P, Discher DE, Lubensky TC (2007) Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity. Nat Phys 3(5):354–360.

    Article  Google Scholar 

  38. Tseng Y, et al (2004) The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem 279(3):1819–1826.

    Article  Google Scholar 

  39. Costa KD, Hucker WJ, Yin FCP (2002) Buckling of actin stress fibers: A new wrinkle in the cytoskeletal tapestry. Cell Motil Cytoskel 52(4):266–274.

    Article  Google Scholar 

  40. Pender N, Mcculloch CAG (1991) Quantitation of actin polymerization in 2 human fibroblast subtypes responding to mechanical stretching. J Cell Sci 100:187–193.

    Google Scholar 

  41. Yap B, Kamm RD (2005) Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98(5):1930–1939.

    Article  Google Scholar 

  42. Trepat X, et al (2007) Universal physical responses to stretch in the living cell. Nature 447(7144):592–595.

    Google Scholar 

  43. Dhont JKG, Briels WJ (2003) Inhomogeneous suspensions of rigid rods in flow. J Chem Phys 118(3):1466–1478.

    Article  Google Scholar 

  44. Belagyi J, Grof P (1983) Rotational motion of actin monomer at low and high salt concentration. Eur J Biochem 130(2):353–358.

    Article  Google Scholar 

  45. Oda T, et al (1998) Effect of the length and effective diameter of F-actin on the filament orientation in liquid crystalline sols measured by X-ray fiber diffraction. Biophys J 75(6):2672–2681.

    Article  MathSciNet  Google Scholar 

  46. Isambert H, Maggs AC (1996) Dynamics and rheology of actin solutions. Macromolecules 29(3):1036–1040.

    Article  Google Scholar 

  47. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support of the NIH (GM076689) and a fellowship to TYK from the Samsung Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Kamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T., Hwang, W. & Kamm, R.D. Computational Analysis of a Cross-linked Actin-like Network. Exp Mech 49, 91–104 (2009). https://doi.org/10.1007/s11340-007-9091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9091-3

Keywords

Navigation