Skip to main content

Advertisement

Log in

Functional Generalized Structured Component Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This means that the chosen smoothing parameter values might have been suboptimal for the other 99 data sets. Therefore, the simulation results may be a bit conservative in the sense that the results would be better if the smoothing parameters have been chosen for every data set optimally.

  2. This is the ID of the patient used in the PhysioNet website.

  3. The original GSCA broke down when we used more than 15 equally spaced percentage occasions due to the high correlations between the responses evaluated at adjacent percentage occasions. Therefore, we ended up evaluating the mean curves at 14 percentage occasions.

References

  • Abdi, H. (2003). Partial least squares (PLS) regression. In M. Lewis-Beck, A. Bryman, & T. Futing (Eds.), Encyclopedia for research methods for the social sciences (pp. 792–795). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Byrd, R., Bilbert, J. C., & Nocedal, J. (2000). A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming. Mathematical Programming A, 89, 149–185.

    Article  Google Scholar 

  • Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large scale nonlinear programming. SIAM Journal of Optimization, 9, 877–900.

    Article  Google Scholar 

  • Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31, 377–403.

    Article  Google Scholar 

  • De Boor, C. (2001). A practical guide to splines. New York: Springer.

    Google Scholar 

  • de De Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41(4), 471–503.

    Article  Google Scholar 

  • Dierckx, P. (1993). Curve and surface fitting with splines. Oxford: Clarendon.

    Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–102.

    Article  Google Scholar 

  • Fahn, S., Elton, R. L., & Members of the UPDRS Development Committee. (1987). Unified Parkinson’s disease rating scale. In S. Fahn, D. Marsden, D. Calne, & M. Goldstein (Eds.), Recent development in Parkinson’s disease. MacMillan Healthcare Information: Florham Park, NJ.

    Google Scholar 

  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis theory and practice. New York: Springer.

    Google Scholar 

  • Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., & Hausdorff, J. M. (2005). Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Movement Disorder, 20(9), 1109–1114.

    Article  Google Scholar 

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.

    Article  PubMed  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society. Series B (Methodological), 55(4), 757–796.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning data mining, inference, and prediction. New York: Springer.

    Google Scholar 

  • Hausdorff, J. M., Lowenthal, J., Herman, T., Gruendlinger, L., Peretz, C., & Giladi, N. (2005). Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. European Journal of Neuroscience, 26, 2369–2375.

    Article  Google Scholar 

  • Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17(5), 427–442.

    Article  PubMed  Google Scholar 

  • Hwang, H., DeSarbo, W. S., & Takane, Y. (2007). Fuzzy Clusterwise Generalized Structured Component Analysis. Psychometrika, 72(2), 181–198.

    Article  Google Scholar 

  • Hwang, H., Jung, K., Takane, Y., & Woodward, T. (2012). Functional multiple-set canonical correlation analysis. Psychometrika, 77, 48–64.

    Article  Google Scholar 

  • Hwang, H., Suk, H. W., Lee, J.-H., Moskowitz, D. S., & Lim, J. (2012). Functional extended redundancy analysis. Psychometrika, 77, 524–542.

    Article  PubMed  Google Scholar 

  • Hwang, H., Suk, H. W., Takane, Y., Lee, J.-H., & Lim, J. (2015). Generalized functional extended redundancy analysis. Psychometrika, 80, 101–125.

    Article  PubMed  Google Scholar 

  • Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99.

    Article  Google Scholar 

  • Hwang, H., Takane, Y., & Malhotra, N. (2007). Multilevel Generalized Structured Component Analysis. Behaviormetrika, 34(2), 95–109.

    Article  Google Scholar 

  • Jackson, I., & Sirois, S. (2009). Infant cognition: Going full factorial with pupil dilation. Developmental science, 12(4), 670–679.

    Article  PubMed  Google Scholar 

  • Li, R., Root, T. L., & Shiffman, S. (2006). A local linear estimation procedure for functional multilevel modeling. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 63–83). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Lindquist, M. A. (2012). Functional causal mediation analysis with an application to brain connectivity. Journal of the American Statistical Association, 107(500), 1297–1309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattar, A. A. G., & Ostry, D. J. (2010). Generalization of dynamics learning across changes in movement amplitude. Journal of Neurophysiology, 104(1), 426–438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulaik, S. A. (1971). The foundations of factor analysis. New York: McGraw-Hill.

    Google Scholar 

  • Ormoneit, D., Black, M. J., Hastie, T., & Kjellström, H. (2005). Representing cyclic human motion using functional analysis. Image and Vision Computing, 23(14), 1264–1276.

    Article  Google Scholar 

  • Park, K. K., Suk, H. W., Hwang, H., & Lee, J.-H. (2013). A functional analysis of deception detection of a mock crime using infrared thermal imaging and the Concealed Information Test. Frontiers in Human Neuroscience, 7, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Podsiadlo, D., & Richardson, S. (1991). The timed up & go: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142–148.

    Article  PubMed  Google Scholar 

  • Ramsay, J. O., & Dalzell, C. J. (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B (Methodological), 53(3), 539–572.

    Google Scholar 

  • Ramsay, J. O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and MATLAB. New York: Springer.

    Book  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis. New York: Springer.

    Book  Google Scholar 

  • Tan, X., Shiyko, M. P., Li, R., Li, Y., & Dierker, L. (2012). A time-varying effect model for intensive longitudinal data. Psychological Methods, 17(1), 61–77.

    Article  PubMed  Google Scholar 

  • Tian, T. S. (2010). Functional data analysis in brain imaging studies. Frontiers in Psychology, 1, 35.

    PubMed  PubMed Central  Google Scholar 

  • Tucker, L. R. (1951). A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Washington: Department of the Army.

  • Vines, B. W., Krumhansl, C. L., Wanderley, M. M., & Levitin, D. J. (2006). Cross-modal interactions in the perception of musical performance. Cognition, 101(1), 80–113.

    Article  PubMed  Google Scholar 

  • Wiesner, M., & Windle, M. (2004). Assessing covariates of adolescent delinquency trajectories: A latent growth mixture modeling approach. Journal of Youth and Adolescence, 33, 431–442.

    Article  Google Scholar 

  • Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E. S., & Hausdorff, J. M. (2005). Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? The European journal of neuroscience, 22(5), 1248–1256.

    Article  PubMed  Google Scholar 

  • Zhang, J.-T. (2013). Analysis of variance for functional data. Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the insightful and constructive comments made by the associate editor and three anonymous reviewers that have greatly improved the paper. The work of the first author was supported by the National Institute On Drug Abuse of the National Institutes of Health under Award Number R01DA009757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Won Suk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suk, H.W., Hwang, H. Functional Generalized Structured Component Analysis. Psychometrika 81, 940–968 (2016). https://doi.org/10.1007/s11336-016-9521-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-016-9521-1

Keywords

Navigation