Skip to main content
Log in

An Analysis of Item Response Theory and Rasch Models Based on the Most Probable Distribution Method

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The most probable distribution method is applied to derive the logistic model as the distribution accounting for the maximum number of possible outcomes in a dichotomous test while introducing latent traits and item characteristics as constraints to the system. The item response theory logistic models, with a particular focus on the one-parameter logistic model, or Rasch model, and their properties and assumptions, are discussed for both infinite and finite populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Adams, E.W. (1965). Elements of a theory of inexact measurement. Philosophy of Science, 32(3), 205–228.

    Article  Google Scholar 

  • Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573.

    Article  Google Scholar 

  • Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47(1), 105–113.

    Article  Google Scholar 

  • Aczel, J. (1966). Lectures on functional equations and their applications. New York: Academic Press.

    Google Scholar 

  • Aczel, J., & Dohmbres, J. (1989). Functional equations in several variables. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bradley, R.A., & Terry, M.E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika, 39(3/4), 324–345.

    Article  Google Scholar 

  • Bernardo, J.M., & Smith, A.F.M. (1994). Bayesian theory. Chichester: Wiley.

    Book  Google Scholar 

  • Barton, M.A., & Lord, F.M. (1981). An upper asymptote for the three-parameter logistic item-response model. Princeton: Educational testing service.

    Google Scholar 

  • Clinton, W.L., & Massa, L.J. (1972). Derivation of a statistical mechanical distribution function by a method of inequalities. American Journal of Physics, 40, 608–610.

    Article  Google Scholar 

  • Davis-Stober, C.P. (2009). Analysis of multinomial models under inequalities constraints: applications to measurement theory. Journal of Mathematical Psychology, 53, 1–13.

    Article  Google Scholar 

  • Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.

    Article  Google Scholar 

  • Fischer, G.H. (1995). Some neglected problems in IRT. Psychometrika, 60(4), 459–487.

    Article  Google Scholar 

  • Fischer, G.H., & Molenaar, I.W. (1995). Rasch models: foundations, recent developments, and applications. New York: Springer.

    Book  Google Scholar 

  • Fishburn, P.C. (1981). Uniqueness properties in finite-continuous additive measurement. Mathematical Social Sciences, 1(2), 145–153.

    Article  Google Scholar 

  • Gonzales, C. (2000). Two factor additive conjoint measurement with one solvable component. Journal of Mathematical Psychology, 44, 285–309.

    Article  PubMed  Google Scholar 

  • Holland, P.W. (1990). On the sampling theory foundations of item response theory models. Psychometrika, 55(4), 577–601.

    Article  Google Scholar 

  • Huang, K. (1987). Statistical mechanics. New York: Wiley.

    Google Scholar 

  • Irtel, H. (1987). On specific objectivity as a concept in measurement. In E.E. Roskam & R. Suck (Eds.), Progress in mathematical psychology-1. Amsterdam: Elsevier.

    Google Scholar 

  • Irtel, H. (1993). The uniqueness of simple latent trait models. In G.H. Fischer & D. Laming (Eds.), Contributions to mathematical psychology, psychometrics, and methodology. New York: Springer.

    Google Scholar 

  • Jaynes, E.T. (1957). Information theory and statistical mechanics. The Physical Review, 106(4), 620–630.

    Article  Google Scholar 

  • Jaynes, E.T. (1968). Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4(3), 227–241.

    Article  Google Scholar 

  • Kagan, A.M., Linnik, V.Y., & Rao, C.R. (1973). Characterization problems in mathematical statistics. New York: Wiley.

    Google Scholar 

  • Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2(4), 389–423.

    PubMed  Google Scholar 

  • Kyngdon, A. (2008). The Rasch model from the perspective of the representational theory of measurement. Theory & Psychology, 18, 89–109.

    Article  Google Scholar 

  • Kyngdon, A. (2011). Plausible measurement analogies to some psychometric models of test performance. British Journal of Mathematical & Statistical Psychology, 64, 478–497.

    Article  Google Scholar 

  • Krantz, D.H., Luce, R.D., Suppes, P., & Tversky, A. (1971). Foundations of measurement. Vol. 1: Additive and polynomial representations. San Diego: Academic Press.

    Google Scholar 

  • Landsberg, P.T. (1954). On most probable distributions. Proceedings of the National Academy of Sciences, 40, 149–154.

    Article  Google Scholar 

  • Lord, F.M., & Novik, M.R. (1968). Statistical theories of mental test scores. London: Addison-Wesley.

    Google Scholar 

  • Luce, R.D. (1959). Individual choice behavior: a theoretical analysis. New York: Wiley.

    Google Scholar 

  • Luce, R.D., Krantz, D.H., Suppes, S., & Tversky, A. (1990). Foundations of measurement. Vol. 3: Representation, axiomatization and invariance. San Diego: Academic Press.

    Google Scholar 

  • Luce, R.D., & Narens, L. (1994). Fifteen problems concerning the representational theories of measurement. In P. Humpreys (Ed.), Patrick suppes: scientific philosopher, (Vol. 2). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Luce, R.D., & Tukey, J.W. (1964). Simultaneous conjoint measurement: a new scale type of fundamental measurement. Journal of Mathematical Psychology, 1, 1–27.

    Article  Google Scholar 

  • Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

    Article  Google Scholar 

  • Michell, J. (1990). An introduction to the logic of psychological measurement. Hillsdale: Erlbaum.

    Google Scholar 

  • Michell, J. (2009). The psychometricians’ fallacy: too clever by half? British Journal of Mathematical & Statistical Psychology, 62, 41–55.

    Article  Google Scholar 

  • Perline, R., Wright, B.D., & Wainer, H. (1979). The Rasch model as additive conjoint measurement. Applied Psychological Measurement, 3, 237–255.

    Article  Google Scholar 

  • Pfanzagl, J. (1971). Theory of measurement. Wurzburg and Vienna: Physica-Verlag.

    Book  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielsen & Lydiche.

    Google Scholar 

  • Rasch, G. (1972). On specific objectivity. An attempt at formalizing the request for generality and validity of scientific statements. In M. Blegvad (Ed.), The Danish yearbook of philosophy. Copenhagen: Munksgaard.

    Google Scholar 

  • Scott, D. (1964). Measurement structures and linear inequalities. Journal of Mathematical Psychology, 1, 233–247.

    Article  Google Scholar 

  • Suppes, P., & Zinnes, J.L. (1963). Basic theory of measurement. In R.D. Luce, R.R. Bush, & E. Galanter (Eds.), Handbook Math. Psych.: Vol. 1. New York: Wiley.

    Google Scholar 

  • Scheiblechner, H. (1972). Das Lernen und Lösen komplexer Denkaufgaben [The learning and solving of complex reasoning items]. Zeitschrift für Experimentelle und Angewandte Psychologie, 3, 456–506.

    Google Scholar 

  • Scheiblechner, H. (1995). Isotonic psychometrics models. Psychometrika, 60, 281–304.

    Article  Google Scholar 

  • Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models. Psychometrika, 64, 295–316.

    Article  Google Scholar 

  • Tversky, A. (1967). A general theory of polynomial conjoint measurement. Journal of Mathematical Psychology, 4, 1–20.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the two anonymous reviewers of the journal for their insight into the work and their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Noventa.

Appendices

Appendix A. Derivation of Condition (24)

Inequalities (22) and (23) in the case of Equation (21) (and omitting the constant term μ for simplicity of notation) become

$$\begin{aligned} &\ln \biggl(\frac{g_{jk}!}{n_{jk}! (g_{jk} - n_{jk})!} \biggr)+\lambda h(\alpha_{j}, \delta_{k}, n_{jk})\\ &\quad \geq \ln \biggl(\frac{g_{jk}!}{(n_{jk}+1)! (g_{jk} - (n_{jk}+1))!} \biggr)+\lambda h(\alpha_{j}, \delta_{k}, n_{jk}+1), \\ &\ln \biggl(\frac{g_{jk}!}{n_{jk}! (g_{jk} - n_{jk})!} \biggr)+\lambda h(\alpha_{j}, \delta_{k}, n_{jk})\\ &\quad \geq \ln \biggl(\frac{g_{jk}!}{(n_{jk}-1)! (g_{jk} - (n_{jk}-1))!} \biggr)+\lambda h(\alpha_{j}, \delta_{k}, n_{jk}-1), \end{aligned}$$

so that expanding the logarithm and simplifying the common terms gives

$$\begin{aligned} &-\ln n_{jk}!-\ln(g_{jk} - n_{jk})! + \lambda h( \alpha_{j}, \delta _{k}, n_{jk})\\ &\quad \geq - \ln(n_{jk}+1)!-\ln(g_{jk} - n_{jk}-1)!+ \lambda h(\alpha_{j}, \delta_{k}, n_{jk}+1), \\ &-\ln n_{jk}!-\ln(g_{jk} - n_{jk})! + \lambda h( \alpha_{j}, \delta _{k}, n_{jk})\\ &\quad \geq - \ln(n_{jk}-1)!-\ln(g_{jk} - n_{jk}+1)!+ \lambda h(\alpha_{j}, \delta_{k}, n_{jk}-1). \end{aligned}$$

Since, now, by definition of factorial, ln(n+1)!=ln(n+1)+lnn!, the previous inequalities become

$$\begin{aligned} &-\ln(g_{jk} - n_{jk}) \geq -\ln(n_{jk}+1) + \lambda\bigl[h(\alpha _{j}, \delta_{k}, n_{jk}+1)-h(\alpha_{j}, \delta_{k}, n_{jk})\bigr], \\ &-\ln n_{jk} + \lambda\bigl[ h(\alpha_{j}, \delta_{k}, n_{jk}) - h(\alpha _{j}, \delta_{k}, n_{jk}-1)\bigr] \geq -\ln(g_{jk} - n_{jk}+1), \end{aligned}$$

which, by setting the finite and backward differences of h jk as

$$\begin{aligned} \Delta h_{jk} = & h(\alpha_{j},\delta_{k},n_{jk}+1)-h( \alpha_j,\delta _{k},n_{jk}), \\ \nabla h_{jk} = & h(\alpha_{j},\delta_{k},n_{jk})-h( \alpha_j,\delta _{k},n_{jk}-1), \end{aligned}$$

can finally be rewritten as

$$\frac{g_{jk}-\exp(-\lambda\Delta h_{jk})}{1+\exp(-\lambda\Delta h_{jk})}\leq n_{jk} \leq \frac{1+g_{jk}}{1+\exp(-\lambda\nabla h_{jk})}, $$

which when divided by g jk leads to condition (24).

Appendix B. Derivation of Equation (38) Applying Stirling Formula

The case of an infinite population can be described by the limits n jk →∞, g jk →∞ and g jk n jk →∞. Under these limits, variations Δn jk in the discrete variables n jk are often considered to be negligible compared to the value of n jk , namely Δn jk n jk , so that it can be directly considered the limit Δn jk →0.

In such a case the forward difference equation can be written as

$$\Delta \biggl[\sum_{jk} \ln \biggl( \frac{g_{jk}!}{n_{jk}! (g_{jk} - n_{jk})!} \biggr)+\lambda \biggl(\sum_{jk} h(\alpha_{j},\delta _{k},n_{jk})-\mu \biggr) \biggr]=0, $$

while the backward difference equation can be given by switching the operator Δ with ∇. Since, now, due to linearity, variation passes under the sign of summation, the previous equation becomes

$$\sum_{jk}\Delta \biggl[ \ln \biggl( \frac{g_{jk}!}{n_{jk}! (g_{jk} - n_{jk})!} \biggr)+\lambda \biggl(\sum_{jk} h(\alpha_{j},\delta _{k},n_{jk})-\mu \biggr) \biggr]=0, $$

and the summations can be dropped, leading to

$$\Delta \biggl[ \ln \biggl(\frac{g_{jk}!}{n_{jk}! (g_{jk} - n_{jk})!} \biggr)+\lambda \biggl( \sum_{jk} h(\alpha_{j},\delta _{k},n_{jk})-\mu \biggr) \biggr]=0, $$

which can be rewritten as

$$\Delta \biggl[ \ln g_{jk}!- \ln n_{jk}!- \ln(g_{jk} - n_{jk})!+\lambda \biggl(\sum _{jk} h(\alpha_{j},\delta_{k},n_{jk})- \mu \biggr) \biggr]=0. $$

The previous equation is usually approximated by means of the Stirling formula, lnN!≈NlnNN, in order to get rid of the factorials. In passing, notice that the Stirling formula misses a term \(\frac{1}{2}\ln 2\pi N\) with respect to the approximation (62). This is not a problem since this additional term vanishes in the limit for N→∞. Hence,

$$\begin{aligned} &\Delta\biggl[ g_{jk} \ln g_{jk}- g_{jk} - n_{jk} \ln n_{jk}+ n_{jk} - (g_{jk} - n_{jk}) \ln(g_{jk} - n_{jk})\\ &\quad {} + (g_{jk} - n_{jk}) + \lambda \biggl(\sum_{jk} h( \alpha_{j},\delta_{k},n_{jk})-\mu\biggr)\biggr]=0, \end{aligned}$$

which simplified gives

$$\Delta\biggl[ g_{jk} \ln g_{jk} - n_{jk} \ln n_{jk} - (g_{jk} - n_{jk}) \ln (g_{jk} - n_{jk}) + \lambda\biggl(\sum _{jk} h(\alpha_{j},\delta _{k},n_{jk})- \mu\biggr)\biggr]=0. $$

Since the forward difference implies n jk n jk n jk (while the backward difference implies n jk n jk −Δn jk ), the equation becomes

$$\begin{aligned} &- (n_{jk}+\Delta n_{jk}) \ln(n_{jk}+ \Delta n_{jk}) + n_{jk} \ln {n_{jk}}\\ &\quad {} - (g_{jk} - n_{jk}-\Delta n_{jk}) \ln(g_{jk} - n_{jk}-\Delta n_{jk}) + \cdots\\ &\quad {}+ (g_{jk} - n_{jk}) \ln(g_{jk} - n_{jk})+ \lambda\bigl[h(\alpha _{j},\delta_{k},n_{jk}+ \Delta n_{jk})- h(\alpha_{j},\delta_{k},n_{jk}) \bigr]=0, \end{aligned}$$

which, dividing by Δn jk , and taking the limit Δn jk →0, gives

$$\ln \biggl(\frac{g_{jk} - n_{jk}}{n_{jk}} \biggr) + \lambda\partial ^{+}_{n_{jk}}h(\alpha_{j},\delta_{k},n_{jk}) = 0, $$

where, by definition of a derivative,

$$\partial^{+}_{n_{jk}}h(\alpha_{j}, \delta_{k},n_{jk})=\lim_{\Delta n_{jk}\rightarrow0} \frac{h(\alpha_{j},\delta_{k},n_{jk}+\Delta n_{jk})- h(\alpha_{j},\delta_{k},n_{jk})}{\Delta n_{jk}}, $$

so that the forward finite variation Δ has been switched with the right derivative \(\partial^{+}_{n_{jk}}\), thus giving

$$ n_{jk} = \frac{g_{jk}}{1 + \exp(-\lambda\partial^{+}_{n_{jk}}h(\alpha _{j},\delta_{k},n_{jk}))}. $$
(B.1)

A similar result can be obtained for the backward difference equation, so that the operator ∇ can be switched with the left derivative \(\partial^{-}_{n_{jk}}\), giving

$$ n_{jk} = \frac{g_{jk}}{1 + \exp(-\lambda\partial^{-}_{n_{jk}}h(\alpha _{j},\delta_{k},n_{jk}))}. $$
(B.2)

Hence, both Equations (B.1) and (B.2) are satisfied when the function h(α j ,δ k ,n jk ) is derivable so that both right and left derivatives exist and coincide, \(\partial^{+}_{n_{jk}}h=\partial^{-}_{n_{jk}}h\) , thus giving Equation (38).

Appendix C. Other IRT Logistic Models

Other parameters in the logistic item response model can be introduced by modifying the constraint and the multiplicity in order to account for lucky guesses, careless errors, and single item discriminability.

3.1 C.1 Permutations

If in the (jk)th cluster there are l jk lucky guesses and c jk careless errors, it must be considered how n jk l jk responses can distribute themselves inside g jk c jk l jk cells in the matrix, so the total number of possible outcomes (15) becomes

$$W\bigl( \{n_{j k} \}\bigr)=\prod_{j k} \binom{g_{j k}-c_{jk}-l_{jk}}{ n_{j k}-l_{jk}} = \prod_{j k}\frac{(g_{j k}-c_{jk}-l_{jk})!}{(n_{j k}-l_{jk})! (g_{j k} - n_{j k}-c_{jk})!}. $$

3.2 C.2 Constraints

Items possessing different discriminating power can be accounted for by means of constraint (44),

$$\sum_{jk}\frac{n_{jk}}{\lambda}a_{k}( \alpha_j-\delta_k)= \mu, $$

where the coefficient a k is the Birnbaum parameter (see Birnbaum in Lord & Novik 1968) and becomes just a dilation parameter for all the items when a k =a for every item as in (44).

3.3 C.3 Derivation

For handiness of calculations, one can follow the same continuous derivation given in Appendix B (omitting the constant parameter μ for simplicity of calculation) in the case of n jk →∞, g jk →∞ and g jk n jk →∞. Due to linearity, the finite variation Δ passes under the sign of summation, which gives

$$\sum_{jk} \Delta \biggl[\ln \biggl( \frac{(g_{j k}-c_{jk}-l_{jk})!}{(n_{j k}-l_{jk})! (g_{j k} - n_{j k}-c_{jk})!} \biggr)+\lambda \biggl(\frac {n_{jk}}{\lambda}a_{k}( \alpha_j-\delta_k) \biggr) \biggr]=0; $$

and the summation can be dropped, leading to

$$\Delta \biggl[\ln \biggl(\frac{(g_{j k}-c_{jk}-l_{jk})!}{(n_{j k}-l_{jk})! (g_{j k} - n_{j k}-c_{jk})!} \biggr)+ n_{jk}a_{k}(\alpha_j-\delta _k) \biggr]=0, $$

which can be rewritten as

$$\Delta\bigl[ \ln(g_{j k}-c_{jk}-l_{jk})!- \ln(n_{j k}-l_{jk})!- \ln {(g_{j k} - n_{j k}-c_{jk})!}+n_{jk}a_{k}( \alpha_j-\delta_k)\bigr]=0. $$

Since in the population limit the Stirling approximation can be applied to the logarithm of a factorial, the difference formula becomes

$$\begin{aligned} &\Delta\bigl[ (g_{j k}-c_{jk}-l_{jk}) \ln(g_{j k}-c_{jk}-l_{jk})- (g_{j k}-c_{jk}-l_{jk}) - (n_{j k}-l_{jk}) \ln(n_{j k}-l_{jk})\\ &\quad {}+ (n_{j k}-l_{jk}) + \cdots- (g_{jk} - n_{jk}-c_{jk}) \ln(g_{jk} - n_{jk}-c_{jk})\\ &{}\quad + (g_{jk} - n_{jk}-c_{jk}) + n_{jk}a_{k}( \alpha_j-\delta_k)\bigr]=0, \end{aligned}$$

which simplified gives

$$\begin{aligned} &\Delta\bigl[ (g_{j k}-c_{jk}-l_{jk}) \ln(g_{j k}-c_{jk}-l_{jk}) - (n_{j k}-l_{jk}) \ln(n_{j k}-l_{jk})+ \cdots\\ &\quad {}+ (n_{j k}-l_{jk}) - (g_{jk} - n_{jk}-c_{jk}) \ln(g_{jk} - n_{jk}-c_{jk}) + n_{jk}a_{k}(\alpha_j-\delta_k)\bigr]=0. \end{aligned}$$

Consider, now, n jk as a continuous variable, as has already been done in Appendix B, so that the finite variation Δ can be switched into the derivative \(\partial_{n_{jk}}\) thus giving

$$- \ln(n_{jk}-l_{jk}) - \frac{n_{jk}-l_{jk}}{n_{jk}-l_{jk}} + \ln(g_{jk} - n_{jk} - c_{jk}) + \frac{g_{jk} - n_{jk}- c_{jk}}{g_{jk} - n_{jk}- c_{jk}} + a_{k}(\alpha_j - \delta_k) =0, $$

which, simplifying, is

$$\ln \biggl(\frac{g_{jk} - n_{jk} - c_{jk}}{n_{jk}-l_{jk}} \biggr) + a_{k}( \alpha_j - \delta_k) = 0, $$

so that

$$\frac{g_{jk} - n_{jk} - c_{jk}}{n_{jk}-l_{jk}} = \exp\bigl(a_{k}(\delta_k - \alpha_j)\bigr), $$

which can be rewritten as

$$g_{jk} - c_{jk} + l_{jk}\exp \bigl(a_{k}(\delta_k - \alpha_j)\bigr) =n_{jk}\bigl(1+ \exp\bigl(a_{k}(\delta_k - \alpha_j)\bigr)\bigr), $$

or equivalently as

$$g_{jk} - (l_{jk}+ c_{jk}) + l_{jk}\bigl(1+\exp\bigl(a_{k}(\delta_k - \alpha _j)\bigr)\bigr) = n_{jk}\bigl(1+ \exp \bigl(a_{k}(\delta_k - \alpha_j)\bigr) \bigr), $$

which gives

$$n_{jk} = l_{jk}+\frac{g_{jk}-(c_{jk}+l_{jk})}{1 + \exp(a_{k}(\delta_k - \alpha_j))}. $$

Since the proportion c jk /g jk gives the probability of a careless error \(P^{C}_{jk}\), and the proportion l jk /g jk gives the probability of a lucky guess \(P^{L}_{jk}\), dividing the previous equation by g jk returns the most probable distribution for the number of cells filled in a cluster,

$$P\bigl(X^{\nu i}_{jk}=1;\alpha_j, \delta_k\bigr)=P^{L}_{jk}+\frac{1 -(P^{L}_{jk}+P^{C}_{jk})}{1+ \exp({\lambda a_{k}(\delta_k - \alpha_j)})}, $$

which is exactly model (47), if one defines \(b_{k}=P^{L}_{jk}\) and \(c_{k}=1-P^{C}_{jk}\). Notice that the choice of omitting the index j is just a simplification in which lucky guesses and careless errors are considered to depend only on the item difficulty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noventa, S., Stefanutti, L. & Vidotto, G. An Analysis of Item Response Theory and Rasch Models Based on the Most Probable Distribution Method. Psychometrika 79, 377–402 (2014). https://doi.org/10.1007/s11336-013-9348-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9348-y

Key words

Navigation