Skip to main content

Advertisement

Log in

Resistance training induces protective adaptation from the oxidative stress induced by an intense-strength session

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate whether a resistance training (at least 6 months of practice) would be beneficial in improving trained subjects’ response to oxidative stress.

Methods

The study evaluated 19 volunteers aged between 18 and 32 years, who were divided into two groups: sedentary and trained. In order to induce an oxidative stress condition, all individuals participated in a single intense-strength session. Volunteers’ blood was collected before and after the exercise practice, which was used later on for biochemical analyses (TBARS, uric acid and activity of superoxide dismutase and catalase). Furthermore, physical fitness of the participants was evaluated through high-yield tests (strength, agility and aerobic endurance).

Results

We found that all measured physical fitness variables were superior in the trained subjects. Additionally, sedentary individuals presented higher levels of plasma malondialdehyde after the intense exercise session (157 % higher; 1.9 ± 1.1–4.9 ± 3.1). No difference was found in uric acid concentration between groups. An increase of SOD activity (50 % greater; 0.4 ± 0.19–0.6 ± 0.12) was also demonstrated in the erythrocytes of sedentary subjects after the exercise practice. SOD activity did not change in the trained group. On the contrary, CAT activity increased only in the trained subjects (48.2 % greater; 2.7 ± 0.9–4.2 ± 1.2).

Conclusion

Resistance training was effective in increasing participants’ physical fitness, and also in improving their response to the oxidative stress induced by an intense exercise practice. This mechanism may help trained subjects to improve their performance and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BHT:

t-Butyl hydroperoxide

BMI:

Body mass index

CAT:

Catalase

GPx:

Glutathione peroxidase

LLS:

Lower limb strength

MDA:

Malondialdehyde

RM:

Repetition maximum

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

ULS:

Upper limb strength

References

  1. Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012:982794. doi:10.1155/2012/982794

    Article  CAS  PubMed  Google Scholar 

  2. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 1–7. ISBN 978-0-12-642760-8

    Chapter  Google Scholar 

  3. Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkl 142:w13659. doi:10.4414/smw.2012.13659

    CAS  Google Scholar 

  4. Farhat F, Dupas J, Amerand A, Goanvec C, Feray A, Simon B, Guegueniat N, Moisan C (2015) Effect of exercise training on oxidative stress and mitochondrial function in rat heart and gastrocnemius muscle. Redox Rep: Commun Free Radic Res 20(2):60–68. doi:10.1179/1351000214Y.0000000105

    Article  CAS  Google Scholar 

  5. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322. doi:10.1104/pp.106.077073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  7. Hernandez A, Cheng A, Westerblad H (2012) Antioxidants and skeletal muscle performance: “common knowledge” vs. experimental evidence. Front Physiol 3:46. doi:10.3389/fphys.2012.00046

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anderssen SA, Carroll S, Urdal P, Holme I (2007) Combined diet and exercise intervention reverses the metabolic syndrome in middle-aged males: results from the Oslo Diet and Exercise Study. Scand J Med Sci Sports 17(6):687–695. doi:10.1111/j.1600-0838.2006.00631.x

    Article  CAS  PubMed  Google Scholar 

  9. Albright A, Franz M, Hornsby G, Kriska A, Marrero D, Ullrich I, Verity LS (2000) American College of Sports Medicine position stand. Exercise and type 2 diabetes. Med Sci Sports Exerc 32(7):1345–1360

    Article  CAS  PubMed  Google Scholar 

  10. Heath GW, Hagberg JM, Ehsani AA, Holloszy JO (1981) A physiological comparison of young and older endurance athletes. J Appl Physiol: Respir Environ Exerc Physiol 51(3):634–640

    CAS  Google Scholar 

  11. Selamoglu S, Turgay F, Kayatekin BM, Gonenc S, Yslegen C (2000) Aerobic and anaerobic training effects on the antioxidant enzymes of the blood. Acta Physiol Hung 87(3):267–273. doi:10.1556/APhysiol.87.2000.3.5

    Article  CAS  PubMed  Google Scholar 

  12. Barker AR, Breese BC, Willcocks RJ, Williams CA (1985) Armstrong N (2010) Commentaries on Viewpoint: do oxidative and anaerobic energy production in exercising muscle change throughout growth and maturation? The importance of exercise intensity when studying developmental energy metabolism. J Appl Physiol 109(5):1565–1566

    Google Scholar 

  13. Winett RA, Carpinelli RN (2001) Potential health-related benefits of resistance training. Prev Med 33(5):503–513. doi:10.1006/pmed.2001.0909

    Article  CAS  PubMed  Google Scholar 

  14. Jenkins RR (2000) Exercise and oxidative stress methodology: a critique. Am J Clin Nutr 72(2 Suppl):670S–674S

    CAS  PubMed  Google Scholar 

  15. Krause M, Rodrigues-Krause J, O’Hagan C, Medlow P, Davison G, Susta D, Boreham C, Newsholme P, O’Donnell M, Murphy C, De Vito G (2014) The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. Eur J Appl Physiol 114(2):251–260. doi:10.1007/s00421-013-2769-6

    Article  CAS  PubMed  Google Scholar 

  16. Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T (2007) Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med 12(5):202–208. doi:10.1265/ehpm.12.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Awobajo FO, Olawale OA, Bassey S (2013) Changes in blood glucose, lipid profile and antioxidant activities in trained and untrained adult male subjects during programmed exercise on the treadmill. Niger Quart J Hosp Med 23(2):117–124

    CAS  Google Scholar 

  18. Rosety-Rodriguez M, Rosety I, Fornieles-Gonzalez G, Diaz-Ordonez AJ, Camacho A, Rosety MA, Pardo A, Rosety M, Alvero R, Ordonez FJ (2012) A 6-week training program increased muscle antioxidant system in elderly diabetic fatty rats. Med Sci Monit: Int Med J Exp Clin Res 18(9):BR346–BR350

    Article  CAS  Google Scholar 

  19. Karvonen MJ, Rautaharju P, Rikkonen P, Ruosteenoja R (1957) Heart size of champion skiers. Annales medicinae internae Fenniae 46(4):169–178

    CAS  PubMed  Google Scholar 

  20. American College of Sports Medicine (2003) ACSM’s resource manual for guidelines for exercise testing and prescription, 4th edn. Lippincott Williams & Wilkins, Philadelphia. ISBN 9780781725255

    Google Scholar 

  21. Mann JB, Stoner JD, Mayhew JL (2012) NFL-225 test to predict 1RM bench press in NCAA Division I football players. J Strength Cond Res/Natl Strength Cond Assoc 26(10):2623–2631. doi:10.1519/JSC.0b013e31826791ef

    Article  Google Scholar 

  22. Sayers SP, Harackiewicz DV, Harman EA, Frykman PN, Rosenstein MT (1999) Cross-validation of three jump power equations. Med Sci Sports Exerc 31(4):572–577

    Article  CAS  PubMed  Google Scholar 

  23. Little T, Williams AG (2005) Specificity of acceleration, maximum speed, and agility in professional soccer players. J Strength Cond Res/Natl Strength Cond Assoc 19(1):76–78. doi:10.1519/14253.1

    Google Scholar 

  24. Weltman J, Seip R, Levine S, Snead D, Rogol A, Weltman A (1989) Prediction of lactate threshold and fixed blood lactate concentrations from 3200-m time trial running performance in untrained females. Int J Sports Med 10(3):207–211. doi:10.1055/s-2007-1024902

    Article  CAS  PubMed  Google Scholar 

  25. Gordon NF, Kohl HW 3rd, Pollock ML, Vaandrager H, Gibbons LW, Blair SN (1995) Cardiovascular safety of maximal strength testing in healthy adults. Am J Cardiol 76(11):851–853

    Article  CAS  PubMed  Google Scholar 

  26. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  PubMed  Google Scholar 

  27. Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    Article  CAS  PubMed  Google Scholar 

  28. Aebi H (1984) Catalase in vitro., vol 105

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  30. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  PubMed  Google Scholar 

  31. Fossati P, Prencipe L, Berti G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26(2):227–231

    CAS  PubMed  Google Scholar 

  32. Theodosiou K, Bogdanis GC, Gkantiraga E, Gissis I, Sambanis M, Souglis A, Sotiropoulos A, Papadopoulos C (2014) Multiarticular isokinetic high load eccentric training induces large increases in eccentric and concentric strength and jumping performance. J Strength Cond Res/Natl Strength Cond Assoc. doi:10.1519/JSC.0000000000000456

    Google Scholar 

  33. Crewther BT, Heke TL, Keogh JW (2013) The effects of a resistance-training program on strength, body composition and baseline hormones in male athletes training concurrently for rugby union 7’s. J Sports Med Phys Fit 53(1):34–41

    CAS  Google Scholar 

  34. Bell GJ, Petersen SR, Wessel J, Bagnall K, Quinney HA (1991) Adaptations to endurance and low velocity resistance training performed in a sequence. Can J Sport Sci = Journal canadien des sciences du sport 16(3):186–192

    CAS  PubMed  Google Scholar 

  35. Nordsborg NB, Lundby C, Leick L, Pilegaard H (2010) Relative workload determines exercise-induced increases in PGC-1alpha mRNA. Med Sci Sports Exerc 42(8):1477–1484. doi:10.1249/MSS.0b013e3181d2d21c

    Article  CAS  PubMed  Google Scholar 

  36. Mahattanatawee K, Manthey JA, Luzio G, Talcott ST, Goodner K, Baldwin EA (2006) Total antioxidant activity and fiber content of select Florida-grown tropical fruits. J Agric Food Chem 54(19):7355–7363. doi:10.1021/jf060566s

    Article  CAS  PubMed  Google Scholar 

  37. Stahl WAO, Sies H, Polidori MC (2001) Analysis of lipophilic antioxidants in human serum and tissues: tocopherols and carotenoids. J Chromatogr 936:983–993

    Google Scholar 

  38. Barreiros Albsd JM, David JP (2006) Oxidative stress: relation between reactive species generation and organism defense New Quimic 29(1):113–123

    Google Scholar 

  39. Kabasakalis A, Tsalis G, Zafrana E, Loupos D, Mougios V (2014) Effects of endurance and high-intensity swimming exercise on the redox status of adolescent male and female swimmers. J Sports Sci 32(8):747–756. doi:10.1080/02640414.2013.850595

    Article  PubMed  Google Scholar 

  40. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol 291(3):R491–R511. doi:10.1152/ajpregu.00614.2005

    Article  CAS  PubMed  Google Scholar 

  41. Xu X, Thompson LV, Navratil M, Arriaga EA (2010) Analysis of superoxide production in single skeletal muscle fibers. Anal Chem 82(11):4570–4576. doi:10.1021/ac100577q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Comhair SA, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283(2):L246–L255. doi:10.1152/ajplung.00491.2001

    Article  CAS  PubMed  Google Scholar 

  43. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  44. Zembron-Lacny A, Ostapiuk J, Slowinska-Lisowska M, Witkowski K, Szyszka K (2008) Pro-antioxidant ratio in healthy men exposed to muscle-damaging resistance exercise. J Physiol Biochem 64(1):27–35

    Article  CAS  PubMed  Google Scholar 

  45. Ji LL, Kang C, Zhang Y (2016) Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.02.025

    Google Scholar 

  46. Ji LL (2015) Redox signaling in skeletal muscle: role of aging and exercise. Adv Physiol Educ 39(4):352–359. doi:10.1152/advan.00106.2014

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Herling Lambertucci.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

Ethics Committee of the Cruzeiro do Sul University approved the study (Protocol: CE/UCS-063/2013).

Informed consent

All participants were informed about the details of the study and signed the informed consent form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.P., Oliveira Soares, E., Malvestiti, R. et al. Resistance training induces protective adaptation from the oxidative stress induced by an intense-strength session. Sport Sci Health 12, 321–328 (2016). https://doi.org/10.1007/s11332-016-0291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-016-0291-z

Keywords

Navigation