Skip to main content

Advertisement

Log in

Increase in homocysteine levels after a half-marathon running: a detrimental metabolic effect of sport?

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Objective

The homocysteine level is considered an important cardiocerebral risk factor. Our aim was to investigate the impact of endurance training on the homocysteine cycle in élite and non-élite athletes.

Methods

The level of physical activity was measured using a SenseWear armband in five healthy marathon runners. Two blood samples, the first under basal conditions and the second after running a half marathon, were obtained in all subjects by venepuncture. Biochemical parameters, including total homocysteine levels, were assessed.

Results

Armband data indicated that each athlete ran the half marathon keeping a race pace close to their anaerobic threshold speed. Although the run times were very different between élite and non-élite athletes, a statistically significant increase in plasma homocysteine levels (p=0.026) was observed in all runners.

Conclusion

Endurance training for 75–100 min held at a race pace close to the anaerobic threshold speed induces an increase in serum plasma homocysteine level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czajkowska A, Lutosławska G, Mazurek K (2008) The relationship between physical activity and plasma homocysteine level in young men (in Polish). Pediatr Endocrinol Diabetes Metab 14(3):177–180

    PubMed  CAS  Google Scholar 

  2. Tawakol A, Forgione MA, Stuehlinger M (2002) Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol 40:1051–1058

    Article  PubMed  CAS  Google Scholar 

  3. Donahue RP, Orchard TJ (1992) Diabetes mellitus and macrovascular complications. An epidemiological perspective. Diabetes Care 15:1141–1159

    Article  CAS  Google Scholar 

  4. Russo T, Cucinotta D (2003) Iperomocisteinemia e rischio cardiovascolare nel diabete mellito. Ann Ist Super Sanità 39(2):153–163

    PubMed  CAS  Google Scholar 

  5. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057

    Article  PubMed  CAS  Google Scholar 

  6. Nygard O, Nordrehaug JE, Refsum H (1997) Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337:230–236

    Article  PubMed  CAS  Google Scholar 

  7. Stampfer MJ, Malinow RM, Willett WC (1992) A prospective study of plasma homocysteine and risk of myocardial infarction in US physicians. JAMA 268:877–881

    Article  PubMed  CAS  Google Scholar 

  8. Welch GN, Loscalzo J: (1998) Homocysteine and atherothrombosis. New Engl J Med 338:1042–1050

    Article  PubMed  CAS  Google Scholar 

  9. Buysschaert M, Preumont V, Hermans MP (2007) Hyperhomocysteinemia and diabetic macroangiopathy: guilty or innocent bystander? A literature review of the current dilemma. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 1(1):53–59

    Article  Google Scholar 

  10. Cuomo V, Sacco M, Perna AF et al (2001) Elevazione della concentrazioni plasmatiche di omocisteina in pazienti con diabete di tipo I e complicanze microvascolari. GIDM 21:9–15

    CAS  Google Scholar 

  11. Garcin JM, Cremades S, Garcia-Hejl C et aI (2006) Hyperhomocysteinemia: an additional risk factor of the metabolic syndrome? Metab Syndr Relat Disord 4(3):185–195

    Article  PubMed  CAS  Google Scholar 

  12. Terruzzi I, Senesi P, Fermo I et al (2007) Are genetic variants of the methyl group metabolism enzymes risk factors predisposing to obesity? J Endocrinol Invest 30(9):747–753

    PubMed  CAS  Google Scholar 

  13. Gaume V, Mougin F, Figard H et al (2005) Physical training decreases total plasma homocysteine and cystine in middle-aged subjects. Ann Nutr Metab 49(2):125–131

    Article  PubMed  CAS  Google Scholar 

  14. Vincent KR, Braith RW, Bottiglieri T et al (2003) Homocysteine and lipoprotein levels following resistance training in older adults. Prev Cardiol 6(4):197–203

    Article  PubMed  CAS  Google Scholar 

  15. Vincent HK, Bourguignon C, Vincent KR (2006) Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity 14(11): 1921–1930

    Article  PubMed  CAS  Google Scholar 

  16. Borrione P, Pigozzi F, Massazza G et al (2007) Hyperhomocysteinemia in inter elite athletes: a longitudinal study. J Endocrinol invest 30(5):367–375

    PubMed  CAS  Google Scholar 

  17. Okura T, Rankinen T, Gagnon J et al (2006) Effect of regular exercise on homocysteine concentrations: the HERITAGE family study. Eur J Appl Physiol 98:394–401

    Article  PubMed  CAS  Google Scholar 

  18. Herrmann M, Wilkinson J, Schorr H et al (2003) Comparison of the influence of volume-oriented training and high-intensity interval training on serum homocysteine and its cofactors in young, healthy swimmers. Clin Chem Lab Med 41(11):1525–1531

    PubMed  CAS  Google Scholar 

  19. Herrmann M, Schorr H, Obeid R et al (2003) Homocysteine increases during endurance exercise. Clin Chem Lab Med 41(11): 1518–1524

    PubMed  CAS  Google Scholar 

  20. Real JT, Merchante A, Gómez JL et al (2005) Effects of marathon running on plasma total homocysteine concentrations. Nutr Metab Cardiovasc Dis 15:134–139

    Article  PubMed  CAS  Google Scholar 

  21. König D, Bissé E, Deibert P et al (2003) Influence of training volume and acute physical exercise on the homocysteine levels in endurancetrained men: interactions with plasma folate and vitamin B12. Ann Nutr Metab 47:114–118

    Article  PubMed  Google Scholar 

  22. Randeva HS, Lewandowski KC, Drzewoski J et al (2002) Exercise decreases plasma total homocysteine in overweight young women with polycystic ovary syndrome. J Clin Endocrinol Metab 87:4496–4501

    Article  PubMed  CAS  Google Scholar 

  23. Borrione P, Rizzo M, Spaccamiglio A et al (2008) Sport-related hyperhomocysteinaemia: a putative marker of muscular demand to be noted for cardiovascular risk. Br J Sports Med 42(11): 594–600

    Article  Google Scholar 

  24. Arvidsson D, Slinde F, Larsson S (2007) Energy cost of physical activities in children: validation of SenseWear Armband. Med Sci Sports Exerc 39(11):2076–2084

    Article  PubMed  Google Scholar 

  25. Arcelli E (1998) Il nuovo correre è bello. Sperling & Kupfer, Milan

    Google Scholar 

  26. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  27. Perseghin G, Price TB, Petersen KF et al (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335(18):1357–1362

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Luzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedini, S., Caimi, A., Alberti, G. et al. Increase in homocysteine levels after a half-marathon running: a detrimental metabolic effect of sport?. Sport Sci Health 6, 35–41 (2010). https://doi.org/10.1007/s11332-010-0094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-010-0094-6

Key words

Navigation