Skip to main content

Advertisement

Log in

Beta-Cell Imaging: Call for Evidence-Based and Scientific Approach

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Introduction

Advances in positron emission tomography (PET) imaging have provided opportunities to develop radiotracers specific for imaging insulin-producing pancreatic β-cells. However, a host of lingering questions should be addressed before these radiotracers are advocated for noninvasive quantification of β-cell mass (BCM) in vivo in the native pancreas.

Method

We provide an overview of tetrabenazine-based PET tracers developed to image and quantify BCM and discuss several theoretical, technical, and biological limitations of applying these tracers in clinical practice.

Discussion

VMAT2, a transporter protein expressed on pancreatic β-cells, has been advocated as a promising target for PET imaging tracers, such as dihydrotetrabenazine. However, the lack of radiotracer specificity for these proteins hampers their clinical application. Another important argument against their use is a striking discrepancy between radiotracer uptake and BCM in subjects with type I diabetes mellitus and healthy controls. Additionally, technical issues, such as the finite spatial resolution of PET, partial volume effects, and movement of the pancreas during respiration, impede PET imaging as a viable option for BCM quantification in the foreseeable future.

Conclusion

The assertion that BCM can be accurately quantified by tetrabenazine derived β-cell-specific radiotracers as density per unit volume of pancreatic tissue is not justifiable at this time. The fallacy of these claims can be explained by technical as well as biological facts that have been disregarded and ignored in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes 94:311–21

    Google Scholar 

  2. Golden SH (2011) Emerging therapeutic approaches for the management of diabetes mellitus and macrovascular complications. Am J Cardiol 108:59B–67B

    Article  PubMed  CAS  Google Scholar 

  3. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J et al (2010) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes 87:293–301

    Google Scholar 

  4. von Herrath M, Chan A (2009) How can we improve the translational landscape for a faster cure of type 1 diabetes? J Clin Invest 119:1061–5

    Article  Google Scholar 

  5. Matveyenko AV, Butler PC (2008) Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab 10:23–31

    Article  PubMed  CAS  Google Scholar 

  6. Hanley NA, Hanley KP, Miettinen PJ, Otonkoski T (2008) Weighing up beta-cell mass in mice and humans: self-renewal, progenitors or stem cells? Mol Cell Endocrinol 288:79–85

    Article  PubMed  CAS  Google Scholar 

  7. de Kort H, de Koning EJ, Rabelink TJ, Bruijn JA, Bajema IM (2011) Islet transplantation in type 1 diabetes. BMJ 2011:d217

    Article  Google Scholar 

  8. Goke B (2010) What are the potential benefits of clinical beta-cell imaging in diabetes mellitus? Curr Pharm Des 16:1547–9

    Article  PubMed  Google Scholar 

  9. Ichise M, Harris PE (2010) Imaging of beta-cell mass and function. J Nucl Med 51:1001–4

    Article  PubMed  CAS  Google Scholar 

  10. Wu Z, Kandeel F (2010) Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 62:1125–38

    Article  PubMed  CAS  Google Scholar 

  11. Brom M, Andralojc K, Oyen WJ, Boerman OC, Gotthardt M (2010) Development of radiotracers for the determination of the beta-cell mass in vivo Curr Pharm Des 16:1561–7

    Article  PubMed  CAS  Google Scholar 

  12. Schneider S (2008) Efforts to develop methods for in vivo evaluation of the native beta-cell mass. Diabetes Obes Metab 10:109–18

    Article  PubMed  Google Scholar 

  13. Blomberg BA, Moghbel MC, Saboury B, Stanley CA, Alavi A (2012) The value of radiologic interventions and (18)F-DOPA PET in diagnosing and localizing focal congenital hyperinsulinism: systematic review and meta-analysis. Mol Imaging Biol. doi:10.1007/s11307-012-0572-0

  14. Hardy OT, Hernandez-Pampaloni M, Saffer JR, Scheuermann JS, Ernst LM, Freifelder R et al (2007) Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 92:4706–11. doi:10.1210/jc.2007-1637

    Article  PubMed  CAS  Google Scholar 

  15. Hardy OT, Hernandez-Pampaloni M, Saffer JR, Suchi M, Ruchelli E, Zhuang H et al (2007) Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 150:140–5. doi:10.1016/j.jpeds.2006.08.028

    Article  PubMed  CAS  Google Scholar 

  16. Schmitz A, Shiue CY, Feng Q, Shiue GG, Deng S, Pourdehnad MT et al (2004) Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol 31:483–91. doi:10.1016/j.nucmedbio.2003.12.003

    Article  PubMed  CAS  Google Scholar 

  17. Schneider S, Feilen PJ, Schreckenberger M, Schwanstecher M, Schwanstecher C, Buchholz HG et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diabetes 113:388–95. doi:10.1055/s-2005-865711

    Article  PubMed  CAS  Google Scholar 

  18. Wangler B, Beck C, Shiue CY, Schneider S, Schwanstecher C, Schwanstecher M et al (2004) Synthesis and in vitro evaluation of (S)-2-([11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential beta-cell imaging agent. Bioorg Med Chem Lett 14:5205–9. doi:10.1016/j.bmcl.2004.07.059

    Article  PubMed  Google Scholar 

  19. Wangler B, Schneider S, Thews O, Schirrmacher E, Comagic S, Feilen P et al (2004) Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbam oyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol 31:639–47. doi:10.1016/j.nucmedbio.2004.01.007

    Article  PubMed  CAS  Google Scholar 

  20. Souza F, Simpson N, Raffo A, Saxena C, Maffei A, Hardy M et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–13

    Article  PubMed  CAS  Google Scholar 

  21. Simpson NR, Souza F, Witkowski P, Maffei A, Raffo A, Herron A et al (2006) Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol 33:855–64

    Article  PubMed  CAS  Google Scholar 

  22. Goland R, Freeby M, Parsey R, Saisho Y, Kumar D, Simpson N et al (2009) 11C-Dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50:382–9

    Article  PubMed  CAS  Google Scholar 

  23. Normandin MD, Petersen KF, Ding YS, Lin SF, Naik S, Fowles K et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–16

    Article  PubMed  CAS  Google Scholar 

  24. Kung HF, Lieberman BP, Zhuang ZP, Oya S, Kung MP, Choi SR et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an (18)F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–37

    Article  PubMed  CAS  Google Scholar 

  25. Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–6

    Article  PubMed  CAS  Google Scholar 

  26. Singhal T, Ding YS, Weinzimmer D, Normandin MD, Labaree D, Ropchan J et al (2011) Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol 13:973–84

    Article  PubMed  Google Scholar 

  27. Anlauf M, Eissele R, Schafer MK, Eiden LE, Arnold R, Pauser U et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–40

    Article  PubMed  CAS  Google Scholar 

  28. Robertson RP (2007) Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes 56:2420–4

    Article  PubMed  CAS  Google Scholar 

  29. Albin RL, Koeppe RA, Bohnen NI, Nichols TE, Meyer P, Wernette K et al (2003) Increased ventral striatal monoaminergic innervation in Tourette syndrome. Neurology 61:310–5

    Article  PubMed  CAS  Google Scholar 

  30. Koeppe RA, Frey KA, Vander Borght TM, Karlamangla A, Jewett DM, Lee LC et al (1996) Kinetic evaluation of [11C]dihydrotetrabenazine by dynamic PET: measurement of vesicular monoamine transporter. J Cereb Blood Flow Metab 16:1288–99

    Article  PubMed  CAS  Google Scholar 

  31. Chan GL, Holden JE, Stoessl AJ, Samii A, Doudet DJ, Dobko T et al (1999) Reproducibility studies with 11C-DTBZ, a monoamine vesicular transporter inhibitor in healthy human subjects. J Nucl Med 40:283–9

    PubMed  CAS  Google Scholar 

  32. Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C, Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C et al (2010) In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol 37:357–63

    Article  PubMed  CAS  Google Scholar 

  33. Tsao HH, Lin KJ, Juang JH, Skovronsky DM, Yen TC, Wey SP et al (2010) Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine (AV-133) to the vesicular monoamine transporter type 2 in rats. Nucl Med Biol 37:413–9

    Article  PubMed  CAS  Google Scholar 

  34. Lin KJ, Weng YH, Wey SP, Hsiao IT, Lu CS, Skovronsky D et al (2010) Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med 51:1480–5

    Article  PubMed  CAS  Google Scholar 

  35. Veluthakal R, Harris P (2010) In vivo beta-cell imaging with VMAT 2 ligands—current state-of-the-art and future perspective. Curr Pharm Des 16:1568–81

    Article  PubMed  CAS  Google Scholar 

  36. Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA et al (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39:543–51

    Article  PubMed  CAS  Google Scholar 

  37. Philippe MF, Benabadji S, Barbot-Trystram L, Vadrot D, Boitard C, Larger E (2011) Pancreatic volume and endocrine and exocrine functions in patients with diabetes. Pancreas 40:359–63. doi:10.1097/MPA.0b013e3182072032

    Article  PubMed  CAS  Google Scholar 

  38. el Newihi H, Dooley CP, Saad C, Staples J, Zeidler A, Valenzuela JE (1988) Impaired exocrine pancreatic function in diabetics with diarrhea and peripheral neuropathy. Dig Dis Sci 33:705–10

    Article  PubMed  Google Scholar 

  39. Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–61

    Article  PubMed  CAS  Google Scholar 

  40. Williams AJ, Chau W, Callaway MP, Dayan CM (2007) Magnetic resonance imaging: a reliable method for measuring pancreatic volume in type 1 diabetes. Diabet Med 24:35–40. doi:10.1111/j.1464-5491.2007.02027.x

    Article  PubMed  CAS  Google Scholar 

  41. Basu S, Alavi A (2007) Partial volume correction of standardized uptake values and the dual time point in FDG-PET imaging: should these be routinely employed in assessing patients with cancer? Eur J Nucl Med Mol Imaging 34:1527–9. doi:10.1007/s00259-007-0467-5

    Article  PubMed  Google Scholar 

  42. Basu S, Zaidi H, Houseni M, Bural G, Udupa J, Acton P et al (2007) Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 37:223–39

    Article  PubMed  Google Scholar 

  43. Chawluk JB, Alavi A, Dann R, Hurtig HI, Bais S, Kushner MJ et al (1987) Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28:431–7

    PubMed  CAS  Google Scholar 

  44. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L et al (2002) Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 29:1639–47

    Article  PubMed  Google Scholar 

  45. Srinivas SM, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A (2009) A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med 23:341–8. doi:10.1007/s12149-009-0241-9

    Article  PubMed  Google Scholar 

  46. Tanna NK, Kohn MI, Horwich DN, Jolles PR, Zimmerman RA, Alves WM et al (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging: impact on PET data correction for atrophy. Part II. Aging and Alzheimer dementia. Radiology 178:123–30

    PubMed  CAS  Google Scholar 

  47. Goriya Y, Hoshi M, Etani N, Kimura K, Shichiri M (1975) Dynamic study of exocrine function of the pancreas in diabetes mellitus with scintigraphy using 75Se-selenomethionine. J Nucl Med 16:270–4

    PubMed  CAS  Google Scholar 

  48. Di Gialleonardo V, Signore A, Scheerstra EA, Visser AK, van Waarde A, Dierckx RA et al (2012) 11C-Hydroxytryptophan uptake and metabolism in endocrine and exocrine pancreas. J Nucl Med 53:1755–63. doi:10.2967/jnumed.112.104117

    Article  PubMed  Google Scholar 

  49. Otsuki K, Yoshikawa K, Kenmochi T, Saigo K, Maruyama M, Akutsu N et al (2010) Evaluation of pancreatic function in normal pancreas as living-related donors and type 1 diabetic pancreas as recipients for pancreas transplantation using 11c-methionine positron emission tomography. Pancreas 39:418–9. doi:10.1097/MPA.0b013e3181bb90d7

    Article  PubMed  Google Scholar 

  50. Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–11

    PubMed  CAS  Google Scholar 

  51. Patel R, Atherton P, Wackerhage H, Singh J (2006) Signaling proteins associated with diabetic-induced exocrine pancreatic insufficiency in rats. Ann N Y Acad Sci 1084:490–502. doi:10.1196/annals.1372.026

    Article  PubMed  CAS  Google Scholar 

  52. Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA (2004) Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther 6:652–9

    Article  PubMed  Google Scholar 

  53. Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Wallen AR, Marcum ES et al (2004) Systematic screening of potential beta-cell imaging agents. Biochem Biophys Res Commun 314:976–83

    Article  PubMed  CAS  Google Scholar 

  54. Kessler RM, Ellis JR Jr, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8:514–22

    Article  PubMed  CAS  Google Scholar 

  55. Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD et al (2010) Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59:1202–10

    Article  PubMed  CAS  Google Scholar 

  56. Sanchez-Crespo A, Andreo P, Larsson SA (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51

    Article  PubMed  Google Scholar 

  57. Kwee TC, Basu S, Saboury B, Torigian DA, Naji A, Alavi A (2011) Beta-cell imaging: opportunities and limitations. J Nucl Med 52:493, author reply 5

    Article  PubMed  Google Scholar 

  58. Cline GW, Zhao X, Jakowski AB, Soeller WC, Treadway JL (2011) Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic beta-cell mass. Biochem Biophys Res Commun 412:413–8

    Article  PubMed  CAS  Google Scholar 

  59. Heidari Z, Mahmoudzadeh-Sagheb H, Moudi B (2008) A quantitative study of sodium tungstate protective effect on pancreatic beta cells in streptozotocin-induced diabetic rats. Micron 39:1300–5

    Article  PubMed  CAS  Google Scholar 

  60. Virostko J, Henske J, Vinet L, Lamprianou S, Dai C, Radhika A et al (2011) Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands. Proc Natl Acad Sci U S A 108:20719–24

    Article  PubMed  CAS  Google Scholar 

  61. Tsao HH, Skovronsky DM, Lin KJ, Yen TC, Wey SP, Kung MP (2011) Sigma receptor binding of tetrabenazine series tracers targeting VMAT2 in rat pancreas. Nucl Med Biol 38:1029–34

    Article  PubMed  CAS  Google Scholar 

  62. Fagerholm V, Mikkola KK, Ishizu T, Arponen E, Kauhanen S, Nagren K et al (2010) Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med 51:1439–46

    Article  PubMed  CAS  Google Scholar 

  63. Blomberg BA, Eriksson O, Saboury B, Alavi A (2012) beta-Cell mass imaging with DTBZ positron emission tomography: is it possible? Mol Imaging Biol. doi:10.1007/s11307-012-0593-8

  64. Blomberg BA, Moghbel MC, Alavi A (2012) PET imaging of beta-cell mass: is it feasible? Diabetes Metab Res Rev 28:601–2. doi:10.1002/dmrr.2314

    Article  PubMed  Google Scholar 

  65. Eriksson O, Alavi A (2012) Imaging the islet graft by positron emission tomography. Eur J Nucl Med Mol Imaging 39:533–42. doi:10.1007/s00259-011-1928-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Olof Eriksson for his contributions to this paper.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Additional information

Björn A. Blomberg and Ion Codreanu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, B.A., Codreanu, I., Cheng, G. et al. Beta-Cell Imaging: Call for Evidence-Based and Scientific Approach. Mol Imaging Biol 15, 123–130 (2013). https://doi.org/10.1007/s11307-013-0620-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0620-4

Key words

Navigation