Skip to main content

Advertisement

Log in

Imaging the islet graft by positron emission tomography

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Clinical islet transplantation is being investigated as a permanent cure for type 1 diabetes mellitus (T1DM). Currently, intraportal infusion of islets is the favoured procedure, but several novel implantation sites have been suggested. Noninvasive longitudinal methodologies are an increasingly important tool for assessing the fate of transplanted islets, their mass, function and early signs of rejection. This article reviews the approaches available for islet graft imaging by positron emission tomography and progress in the field, as well as future challenges and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shapiro J. Eighty years after insulin: parallels with modern islet transplantation. CMAJ. 2002;167(12):1398–400.

    PubMed  Google Scholar 

  2. Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R, et al. Current status of clinical islet transplantation. Transplantation. 2005;79(10):1289–93.

    Article  PubMed  Google Scholar 

  3. Goto M, Eich TM, Felldin M, Foss A, Kallen R, Salmela K, et al. Refinement of the automated method for human islet isolation and presentation of a closed system for in vitro islet culture. Transplantation. 2004;78(9):1367–75.

    Article  PubMed  Google Scholar 

  4. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  PubMed  CAS  Google Scholar 

  5. Rickels MR, Schutta MH, Markmann JF, Barker CF, Naji A, Teff KL. {beta}-Cell function following human islet transplantation for type 1 diabetes. Diabetes. 2005;54(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  6. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.

    Article  PubMed  CAS  Google Scholar 

  7. Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes. 1999;48(10):1907–14.

    Article  PubMed  CAS  Google Scholar 

  8. Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet. 2002;360(9350):2039–45.

    Article  PubMed  CAS  Google Scholar 

  9. Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A, et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes. 2005;54(6):1755–62.

    Article  PubMed  CAS  Google Scholar 

  10. Hirshberg B, Montgomery S, Wysoki MG, Xu H, Tadaki D, Lee J, et al. Pancreatic islet transplantation using the nonhuman primate (rhesus) model predicts that the portal vein is superior to the celiac artery as the islet infusion site. Diabetes. 2002;51(7):2135–40.

    Article  PubMed  CAS  Google Scholar 

  11. Berney T, Toso C. Monitoring of the islet graft. Diabetes Metab. 2006;32(5 Pt 2):503–12.

    Article  PubMed  CAS  Google Scholar 

  12. Christoffersson G, Henriksnas J, Johansson L, Rolny C, Ahlstrom H, Caballero-Corbalan J, et al. Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets. Diabetes. 2010;59(10):2569–78.

    Article  PubMed  CAS  Google Scholar 

  13. Kallskog O, Kampf C, Andersson A, Carlsson PO, Hansell P, Johansson M, et al. Lymphatic vessels in pancreatic islets implanted under the renal capsule of rats. Am J Transplant. 2006;6(4):680–6.

    Article  PubMed  CAS  Google Scholar 

  14. Korsgren O, Nilsson B. Improving islet transplantation: a road map for a widespread application for the cure of persons with type I diabetes. Curr Opin Organ Transplant. 2009;14(6):683–7.

    Article  PubMed  Google Scholar 

  15. Perez VL, Caicedo A, Berman DM, Arrieta E, Abdulreda MH, Rodriguez-Diaz R, et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia. 2011;54(5):1121–6.

    Article  PubMed  Google Scholar 

  16. Leibiger IB, Caicedo A, Berggren PO. Non-invasive in vivo imaging of pancreatic beta-cell function and survival – a perspective. Acta Physiol (Oxf). 2011. doi:10.1111/j.1748-1716.2011.02301.x

  17. Kakabadze Z, Gupta S, Brandhorst D, Korsgren O, Berishvili E. Long-term engraftment and function of transplanted pancreatic islets in vascularized segments of small intestine. Transpl Int. 2011;24(2):175–83.

    Article  PubMed  Google Scholar 

  18. Paty BW, Bonner-Weir S, Laughlin MR, McEwan AJ, Shapiro AM. Toward development of imaging modalities for islets after transplantation: insights from the National Institutes of Health Workshop on Beta Cell Imaging. Transplantation. 2004;77(8):1133–7.

    Article  PubMed  Google Scholar 

  19. Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8(3):701–6.

    Article  PubMed  CAS  Google Scholar 

  20. Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A. In vivo imaging of islet transplantation. Nat Med. 2006;12(1):144–8.

    Article  PubMed  CAS  Google Scholar 

  21. Medarova Z, Moore A. MRI as a tool to monitor islet transplantation. Nat Rev Endocrinol. 2009;5(8):444–52.

    Article  PubMed  Google Scholar 

  22. Toso C, Zaidi H, Morel P, Armanet M, Andres A, Pernin N, et al. Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation. 2005;79(3):353–5.

    Article  PubMed  Google Scholar 

  23. Eich T, Eriksson O, Sundin A, Estrada S, Brandhorst D, Brandhorst H, et al. Positron emission tomography: a real-time tool to quantify early islet engraftment in a preclinical large animal model. Transplantation. 2007;84(7):893–8.

    Article  PubMed  Google Scholar 

  24. Eich T, Eriksson O, Lundgren T. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med. 2007;356(26):2754–5.

    Article  PubMed  CAS  Google Scholar 

  25. Eriksson O, Eich T, Sundin A, Tibell A, Tufveson G, Andersson H, et al. Positron emission tomography in clinical islet transplantation. Am J Transplant. 2009;9(12):2816–24.

    Article  PubMed  CAS  Google Scholar 

  26. Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA. Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther. 2004;6(5):652–9.

    Article  PubMed  Google Scholar 

  27. Ichise M, Harris PE. Imaging of beta-cell mass and function. J Nucl Med. 2010;51(7):1001–4.

    Article  PubMed  CAS  Google Scholar 

  28. Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A. VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Mol Med. 2008;86(1):5–16.

    Article  PubMed  CAS  Google Scholar 

  29. Veluthakal R, Harris P. In vivo beta-cell imaging with VMAT 2 ligands – current state-of-the-art and future perspective. Curr Pharm Des. 2010;16(14):1568–81.

    Article  PubMed  CAS  Google Scholar 

  30. Anlauf M, Schafer MK, Schwark T, von Wurmb-Schwark N, Brand V, Sipos B, et al. Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem. 2006;54(2):201–13.

    Article  PubMed  CAS  Google Scholar 

  31. Weihe E, Eiden LE. Chemical neuroanatomy of the vesicular amine transporters. FASEB J. 2000;14(15):2435–49.

    Article  PubMed  CAS  Google Scholar 

  32. Eiden LE. The vesicular neurotransmitter transporters: current perspectives and future prospects. FASEB J. 2000;14(15):2396–400.

    Article  PubMed  CAS  Google Scholar 

  33. Anlauf M, Eissele R, Schafer MK, Eiden LE, Arnold R, Pauser U, et al. Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem. 2003;51(8):1027–40.

    Article  PubMed  CAS  Google Scholar 

  34. Weihe E, Schafer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci. 1994;5(3):149–64.

    Article  PubMed  CAS  Google Scholar 

  35. Frey KA, Koeppe RA, Kilbourn MR. Imaging the vesicular monoamine transporter. Adv Neurol. 2001;86:237–47.

    PubMed  CAS  Google Scholar 

  36. Goland R, Freeby M, Parsey R, Saisho Y, Kumar D, Simpson N, et al. 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med. 2009;50(3):382–9.

    Article  PubMed  CAS  Google Scholar 

  37. Fagerholm V, Mikkola KK, Ishizu T, Arponen E, Kauhanen S, Nagren K, et al. Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med. 2010;51(9):1439–46.

    Article  PubMed  CAS  Google Scholar 

  38. Simpson NR, Souza F, Witkowski P, Maffei A, Raffo A, Herron A, et al. Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol. 2006;33(7):855–64.

    Article  PubMed  CAS  Google Scholar 

  39. Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C, et al. In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol. 2010;37(3):357–63.

    Article  PubMed  CAS  Google Scholar 

  40. Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E, et al. In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med. 2008;49(7):1171–6.

    Article  PubMed  CAS  Google Scholar 

  41. Lin KJ, Weng YH, Wey SP, Hsiao IT, Lu CS, Skovronsky D, et al. Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med. 2010;51(9):1480–5.

    Article  PubMed  CAS  Google Scholar 

  42. Tsao HH, Lin KJ, Juang JH, Skovronsky DM, Yen TC, Wey SP, et al. Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenazine (AV-133) to the vesicular monoamine transporter type 2 in rats. Nucl Med Biol. 2010;37(4):413–9.

    Article  PubMed  CAS  Google Scholar 

  43. Kwee TC, Basu S, Saboury B, Torigian DA, Naji A, Alavi A. Beta-cell imaging: opportunities and limitations. J Nucl Med. 2011;52(3):493; author reply 493–5.

    Article  Google Scholar 

  44. Tornehave D, Kristensen P, Romer J, Knudsen LB, Heller RS. Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J Histochem Cytochem. 2008;56(9):841–51.

    Article  PubMed  CAS  Google Scholar 

  45. Korner M, Stockli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48(5):736–43.

    Article  PubMed  CAS  Google Scholar 

  46. Gotthardt M, Fischer M, Naeher I, Holz JB, Jungclas H, Fritsch HW, et al. Use of the incretin hormone glucagon-like peptide-1 (GLP-1) for the detection of insulinomas: initial experimental results. Eur J Nucl Med Mol Imaging. 2002;29(5):597–606.

    Article  PubMed  CAS  Google Scholar 

  47. Wild D, Behe M, Wicki A, Storch D, Waser B, Gotthardt M, et al. [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med. 2006;47(12):2025–33.

    PubMed  CAS  Google Scholar 

  48. Brom M, Oyen WJ, Joosten L, Gotthardt M, Boerman OC. 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. Eur J Nucl Med Mol Imaging. 2010;37(7):1345–55.

    Article  PubMed  CAS  Google Scholar 

  49. Wu Z, Todorov I, Li L, Bading J, Li Z, Nair I, et al. In vivo imaging of transplanted islets with (64)Cu-DO3A-VS-Cys(40)-exendin-4 by targeting GLP-1 receptor. Bioconjug Chem. 2011;22(8):1587–94.

    Article  PubMed  CAS  Google Scholar 

  50. Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Wallen AR, Marcum ES, et al. Systematic screening of potential beta-cell imaging agents. Biochem Biophys Res Commun. 2004;314(4):976–83.

    Article  PubMed  CAS  Google Scholar 

  51. Wangler B, Schneider S, Thews O, Schirrmacher E, Comagic S, Feilen P, et al. Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol. 2004;31(5):639–47.

    Article  PubMed  CAS  Google Scholar 

  52. Schmitz A, Shiue CY, Feng Q, Shiue GG, Deng S, Pourdehnad MT, et al. Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol. 2004;31(4):483–91.

    Article  PubMed  CAS  Google Scholar 

  53. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49(4):573–86.

    Article  PubMed  CAS  Google Scholar 

  54. Minn H, Kauhanen S, Seppanen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50(12):1915–8.

    Article  PubMed  CAS  Google Scholar 

  55. Garcia A, Mirbolooki MR, Constantinescu C, Pan ML, Sevrioukov E, Milne N, et al. 18F-Fallypride PET of pancreatic islets: in vitro and in vivo rodent studies. J Nucl Med. 2011;52(7):1125–32.

    Article  PubMed  Google Scholar 

  56. Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26(9):1489–95.

    Article  PubMed  Google Scholar 

  57. Witkowski P, Sondermeijer H, Hardy MA, Woodland DC, Lee K, Bhagat G, et al. Islet grafting and imaging in a bioengineered intramuscular space. Transplantation. 2009;88(9):1065–74.

    Article  PubMed  CAS  Google Scholar 

  58. Pattou F, Kerr-Conte J, Wild D. GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. N Engl J Med. 2010;363(13):1289–90.

    Article  PubMed  Google Scholar 

  59. Cabric S, Sanchez J, Johansson U, Larsson R, Nilsson B, Korsgren O, et al. Anchoring of vascular endothelial growth factor to surface-immobilized heparin on pancreatic islets: implications for stimulating islet angiogenesis. Tissue Eng Part A. 2010;16(3):961–70.

    Article  PubMed  CAS  Google Scholar 

  60. Cabric S, Sanchez J, Lundgren T, Foss A, Felldin M, Kallen R, et al. Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes. 2007;56(8):2008–15.

    Article  PubMed  CAS  Google Scholar 

  61. Cabric S, Eich T, Sanchez J, Nilsson B, Korsgren O, Larsson R, et al. A new method for incorporating functional heparin onto the surface of islets of Langerhans. Tissue Eng Part C. 2008;14(2):141–7.

    Article  CAS  Google Scholar 

  62. Najafi A, Peterson A. Preparation and in vitro evaluation of “no-carrier-added” 18F-labeled biotin. Nucl Med Biol. 1993;20(4):401–5.

    Article  PubMed  CAS  Google Scholar 

  63. Shoup TM, Fischman AJ, Jaywook S, Babich JW, Strauss HW, Elmaleh DR. Synthesis of fluorine-18-labeled biotin derivatives: biodistribution and infection localization. J Nucl Med. 1994;35(10):1685–90.

    PubMed  CAS  Google Scholar 

  64. Blom E, Langstrom B, Velikyan I. 68Ga-labeling of biotin analogues and their characterization. Bioconjug Chem. 2009;20(6):1146–51.

    Article  PubMed  CAS  Google Scholar 

  65. Min JJ, Gambhir SS. Molecular imaging of PET reporter gene expression. Handb Exp Pharmacol. 2008;185(2):277–303.

    Article  PubMed  CAS  Google Scholar 

  66. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA. 1999;96(5):2333–8.

    Article  PubMed  CAS  Google Scholar 

  67. Kim SJ, Doudet DJ, Studenov AR, Nian C, Ruth TJ, Gambhir SS, et al. Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med. 2006;12(12):1423–8.

    Article  PubMed  CAS  Google Scholar 

  68. Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Stout DB, et al. Noninvasive imaging of islet grafts using positron-emission tomography. Proc Natl Acad Sci USA. 2006;103(30):11294–9.

    Article  PubMed  CAS  Google Scholar 

  69. Lu Y, Dang H, Middleton B, Campbell-Thompson M, Atkinson MA, Gambhir SS, et al. Long-term monitoring of transplanted islets using positron emission tomography. Mol Ther. 2006;14(6):851–6.

    Article  PubMed  CAS  Google Scholar 

  70. Kim SJ, Nian C, Doudet DJ, McIntosh CH. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes. 2008;57(5):1331–9.

    Article  PubMed  CAS  Google Scholar 

  71. Yong J, Rasooly J, Dang H, Lu Y, Middleton B, Zhang Z, et al. Multimodality imaging of β-cells in mouse models of type 1 and 2 diabetes. Diabetes. 2011;60(5):1383–92.

    Article  PubMed  CAS  Google Scholar 

  72. Goldenberg DM, Sharkey RM. Novel radiolabeled antibody conjugates. Oncogene. 2007;26(25):3734–44.

    Article  PubMed  CAS  Google Scholar 

  73. Goldenberg DM, Rossi EA, Sharkey RM, McBride WJ, Chang CH. Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med. 2008;49(1):158–63.

    Article  PubMed  CAS  Google Scholar 

  74. Gruaz-Guyon A, Raguin O, Barbet J. Recent advances in pretargeted radioimmunotherapy. Curr Med Chem. 2005;12(3):319–38.

    PubMed  CAS  Google Scholar 

  75. Kudo T, Ueda M, Konishi H, Kawashima H, Kuge Y, Mukai T, et al. PET imaging of hypoxia-inducible factor-1-active tumor cells with pretargeted oxygen-dependent degradable streptavidin and a novel 18F-labeled biotin derivative. Mol Imaging Biol. 2010. doi:10.1007/s11307-010-0418-6.

  76. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–26.

    Article  PubMed  CAS  Google Scholar 

  77. Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol. 2005;77(5):587–97.

    Article  PubMed  CAS  Google Scholar 

  78. Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 2009;39(2):124–45.

    Article  PubMed  Google Scholar 

  79. Kalliokoski T, Simell O, Haaparanta M, Viljanen T, Solin O, Knuuti J, et al. An autoradiographic study of [(18)F]FDG uptake to islets of Langerhans in NOD mouse. Diabetes Res Clin Pract. 2005;70(3):217–24.

    Article  PubMed  CAS  Google Scholar 

  80. Kalliokoski T, Nuutila P, Virtanen KA, Iozzo P, Bucci M, Svedstrom E, et al. Pancreatic glucose uptake in vivo in men with newly diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2008;93(5):1909–14.

    Article  PubMed  CAS  Google Scholar 

  81. Bleeker-Rovers CP, Boerman OC, Rennen HJ, Corstens FH, Oyen WJ. Radiolabeled compounds in diagnosis of infectious and inflammatory disease. Curr Pharm Des. 2004;10(24):2935–50.

    Article  PubMed  CAS  Google Scholar 

  82. Paik JY, Lee KH, Byun SS, Choe YS, Kim BT. Use of insulin to improve [18F]fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun. 2002;23(6):551–7.

    Article  PubMed  CAS  Google Scholar 

  83. Eriksson O, Sadeghi A, Carlsson B, Eich T, Lundgren T, Nilsson B, et al. Distribution of adoptively transferred porcine T-lymphoblasts tracked by (18)F-2-fluoro-2-deoxy-d-glucose and position emission tomography. Nucl Med Biol. 2011;38(6):827–33.

    Article  PubMed  CAS  Google Scholar 

  84. Toso C, Zaidi H, Morel P, Armanet M, Wojtusciszyn A, Mai G, et al. Assessment of 18F-FDG-leukocyte imaging to monitor rejection after pancreatic islet transplantation. Transplant Proc. 2006;38(9):3033–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by Vinnova (grant no. 2007-00069) and the Juvenile Diabetes Research Foundation (JRDF).

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, O., Alavi, A. Imaging the islet graft by positron emission tomography. Eur J Nucl Med Mol Imaging 39, 533–542 (2012). https://doi.org/10.1007/s00259-011-1928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1928-4

Keywords

Navigation