Skip to main content

Advertisement

Log in

Transferrin-Coated Gadolinium Nanoparticles as MRI Contrast Agent

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In this study, the contrasting properties of human serum albumin nanoparticles (HSA-NPs) loaded with gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and coated with transferrin in MRI in mice are evaluated.

Procedures

HSA-NPs were conjugated with Gd-DTPA (Gd-HSA-NPs) and coupled with transferrin (Gd-HSA-NP-Tf). Mice underwent MRI before or after injection of Gd-DTPA, Gd-HSA-NP, or Gd-HSA-NP-Tf.

Results

All the studied contrast agents provided a contrast enhancement (CE) in the blood, heart muscle, and liver. Compared to Gd-DTPA, CE with HSA-NP was achieved at lower Gd doses. Gd-HSA-NP-Tf yielded significantly higher CE than Gd-HSA-NP in the skeletal muscle, blood, cardiac muscle, and liver (p < 0.05). Gd-HSA-NP-Tf achieved a significantly higher CE than Gd-HSA-NP and Gd-DTPA in the blood, cardiac muscle, and liver (p < 0.05). In the brain, only Gd-HSA-NP-Tf was found to cause a significant CE (p < 0.05).

Conclusions

The Gd-HSA nanoparticles have potential as MRI contrast agents. In particular, Gd-HSA-NP-Tf has a potential as a specific contrast agent for the brain, while the blood–brain barrier is still intact, as well as in the heart, liver, and skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2:16

    Article  PubMed  Google Scholar 

  2. Anthony DC, Sibson NR, McAteer MA et al (2011) Detection of brain pathology by magnetic resonance imaging of iron oxide micro-particles. Methods Mol Biol 686:213–227

    Article  PubMed  CAS  Google Scholar 

  3. Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228–232

    Article  PubMed  CAS  Google Scholar 

  4. Kreuter J, Shamenkov D, Petrov V et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target 10:317–325

    Article  PubMed  CAS  Google Scholar 

  5. Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Article  PubMed  CAS  Google Scholar 

  6. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71:251–256

    Article  PubMed  CAS  Google Scholar 

  7. Kreuter J (2012) Mechanism of polymeric nanoparticle-based drug transport across the blood–brain barrier (BBB). Journal of Microencapsulation. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22676632. Accessed 7 June 2012

  8. Ulbrich K, Knobloch T, Kreuter J (2011) Targeting the insulin receptor: nanoparticles for drug delivery across the blood–brain barrier (BBB). J Drug Target 19:125–132

    Article  PubMed  CAS  Google Scholar 

  9. Henrotte V, Muller RN, Bartholet A, Elst LV (2007) The presence of halide salts influences the non-covalent interaction of MRI contrast agents and human serum albumin. Contrast Media Mol Imaging 2:258–261

    Article  PubMed  CAS  Google Scholar 

  10. Weber C, Kreuter J, Langer K (2000) Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm 196:197–200

    Article  PubMed  CAS  Google Scholar 

  11. Gouin S, Winnik FM (2001) Quantitative assays of the amount of diethylenetriaminepentaacetic acid conjugated to water-soluble polymers using isothermal titration calorimetry and colorimetry. Bioconjugate Chem 12:372–377

    Article  CAS  Google Scholar 

  12. Heverhagen JT (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245:638–639

    Article  PubMed  Google Scholar 

  13. National Electrical Manufacturers Association (2001) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication, Rosslyn, Virginia, MS 1-2001

    Google Scholar 

  14. Lewin M, Clement O, Belguise-Valladier P et al (2001) Hepatocyte targeting with Gd-EOB-DTPA: potential application for gene therapy. Invest Radiol 36:9–14

    Article  PubMed  CAS  Google Scholar 

  15. Mohs AM, Zong Y, Guo J et al (2005) PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI. Biomacromolecules 6:2305–11

    Article  PubMed  CAS  Google Scholar 

  16. Karfeld-Sulzer LS, Waters EA, Davis NE et al (2010) Multivalent protein polymer MRI contrast agents: controlling relaxivity via modulation of amino acid sequence. Biomacromolecules 11:1429–36

    Article  PubMed  CAS  Google Scholar 

  17. Glaus C, Rossin R, Welch MJ, Bao G (2010) In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 21:715–722

    Article  PubMed  CAS  Google Scholar 

  18. Oyewumi MO, Yokel RA, Jay M et al (2004) Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 95:613–626

    Article  PubMed  CAS  Google Scholar 

  19. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  20. Hesselink JR, Press GA (1988) MR contrast enhancement of intracranial lesions with Gd-DTPA. Radiol Clin North Am 26:873–887

    PubMed  CAS  Google Scholar 

  21. Russell EJ, Schaible TF, Dillon W et al (1989) Multicenter double-blind placebo-controlled study of gadopentetate dimeglumine as an MR contrast agent: evaluation in patients with cerebral lesions. AJR Am J Roentgenol 152:813–823

    Article  PubMed  CAS  Google Scholar 

  22. Ichikawa H, Ishikawa M, Fukunaga M et al (2010) Quantitative evaluation of blood–cerebrospinal fluid barrier permeability in the rat with experimental meningitis using magnetic resonance imaging. Brain Res 1321:125–132

    Article  PubMed  CAS  Google Scholar 

  23. Visser CC, Stevanović S, Heleen Voorwinden L et al (2004) Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J Drug Target 12:145–150

    Article  PubMed  CAS  Google Scholar 

  24. Hombach V, Merkle N, Bernhard P et al (2010) Prognostic significance of cardiac magnetic resonance imaging: update 2010. Cardiol J 17:549–557

    PubMed  Google Scholar 

  25. Korkusuz H, Esters P, Huebner F et al (2010) Accuracy of cardiovascular magnetic resonance in myocarditis: comparison of MR and histological findings in an animal model. J Cardiovasc Magn Reson 12:49

    Article  PubMed  Google Scholar 

  26. Gulyaev AE, Gelperina SE, Skidan IN et al (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–9

    Article  PubMed  CAS  Google Scholar 

  27. Beitzke D, Wolf F, Edelhauser G et al (2010) Right heart dilatation in adult congenital heart disease: imaging appearance on cardiac magnetic resonance. Br J Radiol 84:188–93

    Article  PubMed  Google Scholar 

  28. Oudit GY, Trivieri MG, Khaper N et al (2006) Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med 84:349–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Wilhelm Sander Stiftung (2003.119.2), the Else Kröner-Fresenius Stiftung, the Deutsche Forschungsgemeinschaft (GRK 1172), and the Heinrich und Erna Schaufler-Stiftung.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huedayi Korkusuz.

Additional information

Karsten Ulbrich, Katerina Welzel, and Verena Koeberle contributed equally to this work.

Joerg Kreuter, Thomas J. Vogl, and Albrecht Piiper shared senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkusuz, H., Ulbrich, K., Welzel, K. et al. Transferrin-Coated Gadolinium Nanoparticles as MRI Contrast Agent. Mol Imaging Biol 15, 148–154 (2013). https://doi.org/10.1007/s11307-012-0579-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0579-6

Key words

Navigation