Skip to main content

Advertisement

Log in

Regulation of CD73 in the development of lower limb atherosclerosis

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Atherosclerosis is an inflammatory process of the arterial wall. CD73 (also known as ecto-5′-nucleotidase) is a key regulator of cell signaling in response to inflammation and hypoxia, and may be important in the development of atherosclerosis. Recently, we have shown that high CD73 activity can be detected in the serum of patients with peripheral arterial disease (PAD). Using this same PAD patient cohort of 226 subjects with 38 femoral artery samples obtained during surgical endarcterectomy and control artery samples taken during autopsy, we explored the association of serum CD73 activity with overall atherosclerotic burden and the expression of CD73 in mature and developing plaques. Interestingly, we found that CD73 activity had a tendency to increase along with more severe presentation of PAD (from 249 nmol/mL/h in moderate disease to 332 nmol/mL/h in severe disease; P = 0.013) and that CD73 expression is elevated in the vasa vasorum of developing plaques, but completely lost in mature occlusive plaques removed during endarcterectomy (P < 0.001). The current findings implicate that as a result of shedding and loss of CD73 from the arterial wall, CD73 activity is elevated in the serum of patients with widespread atherosclerosis. These findings highlight the importance of a better understanding of the local role of CD73 in the development and maturation of arterial atherosclerotic plaques in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

PAD:

Peripheral artery disease

TASC II:

The second Trans-Atlantic Inter-Society Consensus for the management of peripheral artery disease

P-AFOS:

Plasma alkaline phosphatase

References

  1. Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192. doi:10.1124/pr.113.008029

    Article  PubMed  Google Scholar 

  2. Zernecke A, Bidzhekov K, Ozüyaman B et al (2006) CD73/ecto-5'-nucleotidase protects against vascular inflammation and neointima formation. Circulation 113:2120–2127. doi:10.1161/CIRCULATIONAHA.105.595249

    Article  CAS  PubMed  Google Scholar 

  3. Buchheiser A, Ebner A, Burghoff S et al (2011) Inactivation of CD73 promotes atherogenesis in apolipoprotein E-deficient mice. Cardiovasc Res 92:338–347. doi:10.1093/cvr/cvr218

    Article  CAS  PubMed  Google Scholar 

  4. Grünewald JK, Ridley AJ (2010) CD73 represses pro-inflammatory responses in human endothelial cells. J Inflamm (Lond) 7:10. doi:10.1186/1476-9255-7-10

    Article  Google Scholar 

  5. St Hilaire C, Ziegler SG, Markello TC et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442. doi:10.1056/NEJMoa0912923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norgren L, Hiatt WR, Dormandy JA et al (2007) Inter-society consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 33:S1–S75. doi:10.1016/j.ejvs.2006.09.024

    Article  PubMed  Google Scholar 

  7. Jalkanen J, Yegutkin GG, Hollmén M et al (2015) Aberrant circulating levels of purinergic signaling markers are associated with several key aspects of peripheral atherosclerosis and thrombosis. Circ Res 116:1206–1215. doi:10.1161/CIRCRESAHA.116.305715

    Article  CAS  PubMed  Google Scholar 

  8. Yegutkin GG, Helenius M, Kaczmarek E et al (2011) Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells. Angiogenesis 14:503–513. doi:10.1007/s10456-011-9234-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yegutkin GG (2015) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49:473–497. doi:10.3109/10409238.2014.953627

    Article  Google Scholar 

  10. Semenza GL (2010) Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30:648–652. doi:10.1161/ATVBAHA.108.181644

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz RS, Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665. doi:10.1056/NEJMra0910283

    Article  Google Scholar 

  12. Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367:2322–2333. doi:10.1056/NEJMra1205750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061. doi:10.1161/01.ATV.0000178991.71605.18

    Article  CAS  PubMed  Google Scholar 

  14. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242. doi:10.1093/cvr/cvq045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56. doi:10.1146/annurev-physiol-021113-170322

    Article  CAS  PubMed  Google Scholar 

  16. Kuwahara F, Kai H, Tokuda K et al (2002) Hypoxia-inducible factor-1alpha/vascular endothelial growth factor pathway for adventitial vasa vasorum formation in hypertensive rat aorta. Hypertension 39:46–50

    Article  CAS  PubMed  Google Scholar 

  17. Fleiner M, Kummer M, Mirlacher M et al (2004) Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 110:2843–2850. doi:10.1161/01.CIR.0000146787.16297.E8

    Article  PubMed  Google Scholar 

  18. Mercier N, Kiviniemi TO, Saraste A et al (2012) Impaired ATP-induced coronary blood flow and diminished aortic NTPDase activity precede lesion formation in apolipoprotein E-deficient mice. Am J Pathol 180:419–428. doi:10.1016/j.ajpath.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  19. Mahmut A, Boulanger M-C, Bouchareb R et al (2015) Adenosine derived from ecto-nucleotidases in calcific aortic valve disease promotes mineralization through A2a adenosine receptor. Cardiovasc Res 106:109–120. doi:10.1093/cvr/cvv027

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Jian R, Yu J et al (2015) CD73 regulates vascular smooth muscle cell functions and facilitates atherosclerotic plaque formation. IUBMB Life 67:853–860. doi:10.1002/iub.1448

    Article  CAS  PubMed  Google Scholar 

  21. Chadjichristos CE, Scheckenbach KEL, van Veen TAB et al (2010) Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation 121:123–131. doi:10.1161/CIRCULATIONAHA.109.867176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

From the MediCity Research Laboratory of Turku University (Turku, Finland), we thank Sari Mäki and Teija Kanasuo for technical assistance and PhD Gennady G. Yegutkin for analyses of CD73 activity in serum samples. From the Department of Pathology of Turku University Hospital, we thank Dr. Heikki Aho and Dr. Markku Kallajoki for the supply of autopsy samples.

Authors’ contributions

Initial idea and study design by JJ. HH and JJ collected the data. JJ, MH, and SJ contributed to the analysis of data. All authors were involved in preparing the manuscript and read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Jalkanen.

Ethics declarations

Funding

The study was supported by the Academy of Finland, the Sigrid Juselius Foundation, Orion Research Foundation, and the Clinical Research Fund (EVO) of Turku University Hospital. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest

Juho Jalkanen declares that he/she has no conflict of interest.

Maija Hollmén declares that he/she has no conflict of interest.

Sirpa Jalkanen declares that he/she has no conflict of interest.

Harri Hakovirta declares that he/she has no conflict of interest.

Ethical approval

The study has been approved by the Ethical Committee of the Hospital District of South-West Finland and the study has been conducted according to the Decleration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalkanen, J., Hollmén, M., Jalkanen, S. et al. Regulation of CD73 in the development of lower limb atherosclerosis. Purinergic Signalling 13, 127–134 (2017). https://doi.org/10.1007/s11302-016-9545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9545-0

Keywords

Navigation