Skip to main content
Log in

Cutting off the power: inhibition of leukemia cell growth by pausing basal ATP release and P2X receptor signaling?

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

T cells respond to antigen stimulation with the rapid release of cellular ATP, which stimulates an autocrine feedback mechanism that regulates calcium influx through P2X receptors. This autocrine purinergic feedback mechanism plays an essential role in the activation of T cells resulting in cell proliferation and clonal expansion. We recently reported that increases in mitochondrial ATP production drive this stimulation-induced purinergic signaling mechanism but that low-level mitochondrial ATP production fuels basal T cell functions required to maintain vigilance of unstimulated T cells. Here we studied whether defects in these purinergic signaling mechanisms are involved in the unwanted proliferation of leukemia T cells. We found that acute leukemia T cells (Jurkat) possess a larger number and more active mitochondria than their healthy counterparts. Jurkat cells have higher intracellular ATP concentrations and generat more extracellular ATP than unstimulated T cells from healthy donors. As a result, increased purinergic signaling through P2X1 and P2X7 receptors elevates baseline levels of cytosolic Ca2+ in Jurkat cells. We found that pharmacological inhibition of this basal purinergic signaling mechanism decreases mitochondrial activity, Ca2+ signaling, and cell proliferation. Similar results were seen in the leukemic cell lines THP-1, U-937, and HL-60. Combined treatment with inhibitors of P2X1 or P2X7 receptors and the chemotherapeutic agent 6-mercaptopurine completely blocked Jurkat cell proliferation. Our results demonstrate that increased mitochondrial metabolism promotes autocrine purinergic signaling and uncontrolled proliferation of leukemia cells. These findings suggest that deranged purinergic signaling can result in T cell malignancy and that therapeutic targeting aimed at purinergic signaling is a potential strategy to combat T cell leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2008) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  Google Scholar 

  2. Pui CH, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. Lancet 371:1030–1043

    Article  CAS  PubMed  Google Scholar 

  3. Pui CH (2009) T cell acute lymphoblastic leukemia: NOTCHing the way toward a better treatment outcome. Cancer Cell 15:85–87

    Article  CAS  PubMed  Google Scholar 

  4. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM (2012) Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 119:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riscoe MK, Brouns MC, Fitchen JH (1989) Purine metabolism as a target for leukemia chemotherapy. Blood Rev 3:162–173

    Article  CAS  PubMed  Google Scholar 

  6. Poplack DG, Blatt J, Reaman G (1981) Purine pathway enzyme abnormalities in acute lymphoblastic leukemia. Cancer Res 41:4821–4823

    CAS  PubMed  Google Scholar 

  7. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippini A, Taffs RE, Sitkovsky MV (1990) Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci U S A 87:8267–8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, Verderio C, Buer J, Scanziani E, Grassi F (2008) Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal 1(39):ra6

    Article  PubMed  Google Scholar 

  11. Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG (2009) Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woehrle T, Yip L, Elkhal A, Sumi Y, Chen Y, Yao Y, Insel PA, Junger WG (2010) Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116:3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ledderose C, Bao Y, Lidicky M, Zipperle J, Li L, Strasser K, Shapiro NI, Junger WG (2014) Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J Biol Chem 289:25936–25945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yip L, Cheung CW, Corriden R, Chen Y, Insel PA, Junger WG (2007) Hypertonic stress regulates T-cell function by the opposing actions of extracellular adenosine triphosphate and adenosine. Shock 27:242–250

    Article  CAS  PubMed  Google Scholar 

  15. Sumi Y, Woehrle T, Chen Y, Bao Y, Li X, Yao Y, Inoue Y, Tanaka H, Junger WG (2014) Plasma ATP is required for neutrophil activation in a mouse sepsis model. Shock 42:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurishita Y, Kohira T, Ojida A, Hamachi I (2012) Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. J Am Chem Soc 134:18779–18789

    Article  CAS  PubMed  Google Scholar 

  17. Ledderose C, Bao Y, Ledderose S, Woehrle T, Heinisch M, Yip L, Zhang J, Robson SC, Shapiro NI, Junger WG (2016) Mitochondrial dysfunction depletes purinergic signaling mechanisms needed for T cell vigilance and immune defense. J Infect Dis 213:456–464

    Article  PubMed  Google Scholar 

  18. Zhi-Jun Y, Sriranganathan N, Vaught T, Arastu SK, Ahmed SA (1997) A dye-based lymphocyte proliferation assay that permits multiple immunological analyses: mRNA, cytogenetic, apoptosis, and immunophenotyping studies. J Immunol Methods 210:25–39

    Article  CAS  PubMed  Google Scholar 

  19. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    Article  CAS  PubMed  Google Scholar 

  20. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from anti-tumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS ONE 3(7), e2599

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yegutkin GG, Mikhailov A, Samburski SS, Jalkanen S (2006) The detection of micromolar pericellular ATP pool on lymphocyte surface by using lymphoid ecto-adenylate kinase as intrinsic ATP sensor. Mol Biol Cell 17:3378–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  24. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162–169

    Article  CAS  PubMed  Google Scholar 

  25. Keij JF, Bell-Prince C, Steinkamp JA (2000) Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 39:203–210

    Article  CAS  PubMed  Google Scholar 

  26. Burnstock G, Fredholm BB, North RA, Verkhratsky A (2010) The birth and postnatal development of purinergic signaling. Acta Physiol 199:93–147

    Article  CAS  Google Scholar 

  27. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    Article  CAS  PubMed  Google Scholar 

  28. Burnstock G, Di Virgilio F (2013) Purinergic signaling and cancer. Purinergic Signal 9:491–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonioli L, Blandizzi C, Pacher P, Hasko G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev 13:842–857

    Article  CAS  Google Scholar 

  30. Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X7: a growth-promoting receptor—implications for cancer. Purinergic Signal 5:251–256

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, Di Virgilio F (1999) Increased proliferation rate of lymphoid cells transfected with the P2X(7) ATP receptor. J Biol Chem 274:33206–33208

    Article  CAS  PubMed  Google Scholar 

  32. Zhang XJ, Zheng GG, Ma XT, Yang YH, Li G, Rao Q, Nie K, Wu KF (2004) Expression of P2X7 in human hematopoietic cell lines and leukemia patients. Leuk Res 28:1313–1322

    Article  CAS  PubMed  Google Scholar 

  33. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A, Cuneo A, Castoldi G, Di Virgilio F, Baricordi OR (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–708

    Article  CAS  PubMed  Google Scholar 

  34. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465

    Article  CAS  PubMed  Google Scholar 

  38. Bao Y, Ledderose C, Seier T, Graf AF, Brix B, Chong E, Junger WG (2014) Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J Biol Chem 289:26794–26803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, Zhang J, Junger WG (2015) mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol 210:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  41. Voogd TE, Vansterkenburg ELM, Wilting J, Janssen LHM (1993) Recent research on the biological activity of suramin. Pharmacol Rev 45:177–203

    CAS  PubMed  Google Scholar 

  42. La Rocca RV, Danesi R, Cooper MR, Jamis-Dow CA, Ewing MW, Linehan WM, Myers CE (1991) Effect of suramin on human prostate cancer cells in vitro. J Urol 145:393–398

    PubMed  Google Scholar 

  43. Taylor CW, Lui R, Fanta P, Salmon SE (1992) Effects of suramin on in vitro growth of fresh human tumors. J Natl Cancer Inst 84:489–494

    Article  CAS  PubMed  Google Scholar 

  44. Rubio GJ, Pinedo HM, Virizuela J, van Ark-Otte J, Giaccone G (1995) Effects of suramin on human lung cancer cell lines. Eur J Cancer 31A:244–251

    Article  CAS  PubMed  Google Scholar 

  45. Hosang M (1985) Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cell Biochem 29:265–273

    Article  CAS  PubMed  Google Scholar 

  46. Pollak M, Richard M (1990) Suramin blockade of insulin-like growth factor I-stimulated proliferation of human osteosarcoma cells. J Natl Cancer Inst 82:1349–1352

    Article  CAS  PubMed  Google Scholar 

  47. Figg WD, Cooper MR, Thibault A, Headlee D, Humphrey J, Bergan RC, Reed E, Sartor O (1994) Acute renal toxicity associated with suramin in the treatment of prostate cancer. Cancer 74:1612–1614

    Article  CAS  PubMed  Google Scholar 

  48. Dawson NA, Cooper MR, Figg WD, Headlee DJ, Thibault A, Bergan RC, Steinberg SM, Sausville EA, Myers CE, Sartor O (1995) Antitumor activity of suramin in hormone-refractory prostate cancer controlling for hydrocortisone treatment and flutamide withdrawal as potentially confounding variables. Cancer 76:452–463

    Article  Google Scholar 

  49. Small EJ, Meyer M, Marshall ME, Reyno LM, Meyers FJ, Natale RB, Lenehan PF, Chen L, Slichenmyer WJ, Eisenberger M (2000) Suramin therapy for patients with symptomatic hormone-refractory prostate cancer: results of a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J Clin Oncol 18:1440–1450

    CAS  PubMed  Google Scholar 

  50. Beavis PA, Stagg J, Darcy PK, Smyth MJ (2012) CD73: a potent suppressor of antitumor immune response. Trends Immunol 33:231–237

    Article  CAS  PubMed  Google Scholar 

  51. Antonioli L, Blandizzi C, Pacher P, Haskó G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857

    Article  CAS  PubMed  Google Scholar 

  52. Robak P, Robak T (2013) Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat Rev 39:851–861

    Article  CAS  PubMed  Google Scholar 

  53. Salam L, Abdel-Wahab O (2015) Hairy cell leukemia: update and current therapeutic approach. Curr Opin Hematol 22:355–361

    CAS  PubMed  Google Scholar 

  54. Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang T, Chen WW, Clish CB, Sabatin DM (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants from the National Institutes of Health, GM-51477, GM-60475, AI-080582, and T32GM103702 (W.G.J.), and from the German Research Foundation (DFG), LE-3209/1-1 (C.L.). We thank Drs. Yasutaka Kurishita and Itaru Hamachi for kindly providing the fluorescent ATP probe 2-2Zn(II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang G. Junger.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Staining of mitochondria in Jurkat cells with MitoTracker Green does not depend on mitochondrial membrane potential. ac Jurkat cells were treated with CCCP (1 μM) or HBSS (control) for 10 min, loaded with MitoTracker Green AM (50 nM) or TMRE (100 nM) for 15 min and analyzed with a flow cytometer. Representative histograms are shown in panels a and b and cumulative results of n = 3 experiments (mean ± SD) are shown in panel c. MTG, MitoTracker Green; MFI, mean fluorescence; n.s., non-significant; ***p < 0.001, t test. (GIF 35 kb)

High resolution (TIF 28,039 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledderose, C., Woehrle, T., Ledderose, S. et al. Cutting off the power: inhibition of leukemia cell growth by pausing basal ATP release and P2X receptor signaling?. Purinergic Signalling 12, 439–451 (2016). https://doi.org/10.1007/s11302-016-9510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9510-y

Keywords

Navigation