Skip to main content
Log in

Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5′-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5′-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca2+]i) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca2+]i transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca2+]i transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca2+]i response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca2+]i transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Loebel DA, Watson CM, De Young RA, Tam PP (2003) Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 264(1):1–14

    Article  CAS  PubMed  Google Scholar 

  2. Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126(16):3597–3605

    CAS  PubMed  Google Scholar 

  3. Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J (2002) Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci U S A 99(14):9550–9555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Ji G, Fleischmann B, Katus HA, Hescheler J, Franz WM (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29(6):1525–1539

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107(14):1912–1916

    Article  CAS  PubMed  Google Scholar 

  6. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, Puceat M (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16(12):1558–1566

    Article  PubMed  Google Scholar 

  7. Sauer H, Rahimi G, Hescheler J, Wartenberg M (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476(3):218–223

    Article  CAS  PubMed  Google Scholar 

  8. van Wijk B, Moorman AF, van den Hoff MJ (2007) Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res 74(2):244–255

    Article  PubMed  Google Scholar 

  9. Bekhite MM, Figulla HR, Sauer H, Wartenberg M (2013) Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production. Int J Cardiol 167(3):798–808

    Article  PubMed  Google Scholar 

  10. Sauer H, Engel S, Milosevic N, Sharifpanah F, Wartenberg M (2012) Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase. Int J Oncol 40(2):501–508

    CAS  PubMed  Google Scholar 

  11. Bartsch C, Bekhite MM, Wolheim A, Richter M, Ruhe C, Wissuwa B, Marciniak A, Muller J, Heller R, Figulla HR, Sauer H, Wartenberg M (2011) NADPH oxidase and eNOS control cardiomyogenesis in mouse embryonic stem cells on ascorbic acid treatment. Free Radic Biol Med 51(2):432–443

    Article  CAS  PubMed  Google Scholar 

  12. Sauer H, Ruhe C, Muller JP, Schmelter M, D’Souza R, Wartenberg M (2008) Reactive oxygen species and upregulation of NADPH oxidases in mechanotransduction of embryonic stem cells. Methods Mol Biol 477:397–418

    Article  CAS  PubMed  Google Scholar 

  13. Sharifpanah F, Wartenberg M, Hannig M, Piper HM, Sauer H (2008) Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells 26(1):64–71

    Article  CAS  PubMed  Google Scholar 

  14. Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20(8):1182–1184

    Article  CAS  PubMed  Google Scholar 

  15. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  CAS  PubMed  Google Scholar 

  16. Puceat M, Jaconi M (2005) Ca2+ signalling in cardiogenesis. Cell Calcium 38(3–4):383–389

    Article  CAS  PubMed  Google Scholar 

  17. Lynch J, Guo L, Gelebart P, Chilibeck K, Xu J, Molkentin JD, Agellon LB, Michalak M (2005) Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca(2+)-dependent signaling cascade. J Cell Biol 170(1):37–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wei H, Juhasz O, Li J, Tarasova YS, Boheler KR (2005) Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9(4):804–817

    Article  PubMed  Google Scholar 

  19. Schwanke K, Wunderlich S, Reppel M, Winkler ME, Matzkies M, Groos S, Itskovitz-Eldor J, Simon AR, Hescheler J, Haverich A, Martin U (2006) Generation and characterization of functional cardiomyocytes from rhesus monkey embryonic stem cells. Stem Cells 24(6):1423–1432

    Article  CAS  PubMed  Google Scholar 

  20. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91(3):189–201

    Article  CAS  PubMed  Google Scholar 

  21. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118(5):507–517

    Article  PubMed  Google Scholar 

  22. McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47

    Article  CAS  PubMed  Google Scholar 

  23. Burnstock G (2011) Introductory overview of purinergic signalling. Front Biosci (Elite Ed) 3:896–900

    Google Scholar 

  24. Burnstock G (1986) The changing face of autonomic neurotransmission. Acta Physiol Scand 126(1):67–91

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68(8):1369–1394

    Article  CAS  PubMed  Google Scholar 

  26. Ulrich H (2012) Purinergic Receptors in Stem Cell Biology. In: Hayat MA (ed) Stem Cells and Cancer Stem Cells, Volume 8, vol 8. Stem Cells and Cancer Stem Cells. Springer Netherlands, pp 267–274

  27. Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AM, Ulrich H (2012) Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal 8(3):523–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. von Kugelgen I, Wetter A (2000) Molecular pharmacology of P2Y-receptors. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):310–323

    Article  Google Scholar 

  29. Bucheimer RE, Linden J (2004) Purinergic regulation of epithelial transport. J Physiol 555(Pt 2):311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Burnstock G (2012) Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 34(3):218–225

    Article  CAS  PubMed  Google Scholar 

  31. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–S181

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Coppi E, Pugliese AM, Urbani S, Melani A, Cerbai E, Mazzanti B, Bosi A, Saccardi R, Pedata F (2007) ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells 25(7):1840–1849

    Article  CAS  PubMed  Google Scholar 

  33. Lu D, Insel PA (2014) Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. Am J Physiol Cell Physiol 306(9):C779–C788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89(2):265–272

    Article  CAS  PubMed  Google Scholar 

  35. Bekhite MM, Finkensieper A, Binas S, Muller J, Wetzker R, Figulla HR, Sauer H, Wartenberg M (2011) VEGF-mediated PI3K class IA and PKC signaling in cardiomyogenesis and vasculogenesis of mouse embryonic stem cells. J Cell Sci 124(Pt 11):1819–1830

    Article  CAS  PubMed  Google Scholar 

  36. Kleger A, Seufferlein T, Malan D, Tischendorf M, Storch A, Wolheim A, Latz S, Protze S, Porzner M, Proepper C, Brunner C, Katz SF, Varma Pusapati G, Bullinger L, Franz WM, Koehntop R, Giehl K, Spyrantis A, Wittekindt O, Lin Q, Zenke M, Fleischmann BK, Wartenberg M, Wobus AM, Boeckers TM, Liebau S (2010) Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation 122(18):1823–1836

    Article  CAS  PubMed  Google Scholar 

  37. Muller M, Stockmann M, Malan D, Wolheim A, Tischendorf M, Linta L, Katz SF, Lin Q, Latz S, Brunner C, Wobus AM, Zenke M, Wartenberg M, Boeckers TM, von Wichert G, Fleischmann BK, Liebau S, Kleger A (2012) Ca2+ activated K channels-new tools to induce cardiac commitment from pluripotent stem cells in mice and men. Stem Cell Rev 8(3):720–740

    Article  PubMed  Google Scholar 

  38. Resende RR, Majumder P, Gomes KN, Britto LR, Ulrich H (2007) P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-D-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience 146(3):1169–1181

    Article  CAS  PubMed  Google Scholar 

  39. Sauer H, Theben T, Hescheler J, Lindner M, Brandt MC, Wartenberg M (2001) Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells. Am J Physiol Heart Circ Physiol 281:H411–H421

    CAS  PubMed  Google Scholar 

  40. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64(4):785–795

    Article  CAS  PubMed  Google Scholar 

  42. Lewis CJ, Surprenant A, Evans RJ (1998) 2′,3′-O-(2,4,6- trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP)–a nanomolar affinity antagonist at rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 124(7):1463–1466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4(1):1–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110(3):415–432

    Article  Google Scholar 

  45. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  47. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  48. Leon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest 104(12):1731–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pedersen KA, Schroder RL, Skaaning-Jensen B, Strobaek D, Olesen SP, Christophersen P (1999) Activation of the human intermediate-conductance Ca(2+)-activated K(+) channel by 1-ethyl-2-benzimidazolinone is strongly Ca(2+)-dependent. Biochim Biophys Acta 1420(1–2):231–240

    Article  CAS  PubMed  Google Scholar 

  50. Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK, Hescheler J (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84(2):136–145

    Article  CAS  PubMed  Google Scholar 

  51. Taha MF, Valojerdi MR, Mowla SJ (2007) Effect of bone morphogenetic protein-4 (BMP-4) on cardiomyocyte differentiation from mouse embryonic stem cell. Int J Cardiol 120(1):92–101

    Article  PubMed  Google Scholar 

  52. Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3(7):544–556

    Article  CAS  PubMed  Google Scholar 

  53. Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280(4):H1814–H1820

    CAS  PubMed  Google Scholar 

  54. Holubarsch C, Goulette RP, Litten RZ, Martin BJ, Mulieri LA, Alpert NR (1985) The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 56(1):78–86

    Article  CAS  PubMed  Google Scholar 

  55. Alpert NR, Mulieri LA (1986) Functional consequences of altered cardiac myosin isoenzymes. Med Sci Sports Exerc 18(3):309–313

    Article  CAS  PubMed  Google Scholar 

  56. Kubalak SW, Miller-Hance WC, O’Brien TX, Dyson E, Chien KR (1994) Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 269(24):16961–16970

    CAS  PubMed  Google Scholar 

  57. Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF, Christoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100(3):354–362

    Article  CAS  PubMed  Google Scholar 

  58. Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106(2):240–254

    Article  CAS  PubMed  Google Scholar 

  59. Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10(18):1083–1091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yahya Asadi Habibabadi, Ms. Desiré Möhner, Mrs. Martina Voigt, and Ms. Constance Danzer for their generous supports to accomplish this research project. This work was supported by the von Behring-Röntgen Foundation, Marburg and the Excellence Cluster Cardiopulmonary System (ECCPS) of the German Research Foundation.

Disclosures

Nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Wartenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Flow cytometry analysis of the number of α-actinin-positive cells presented as dot plots. Dots inside high-lighted (blue) frames indicate α-actinin-positive cardiac cells in the untreated control and the ATP or ADP-treated samples. (PPTX 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazrouei, S., Sharifpanah, F., Bekhite, M.M. et al. Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP. Purinergic Signalling 11, 491–506 (2015). https://doi.org/10.1007/s11302-015-9468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9468-1

Keywords

Navigation