Skip to main content
Log in

Investigation of the functional expression of purine and pyrimidine receptors in porcine isolated pancreatic arteries

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Receptors for purines and pyrimidines are expressed throughout the cardiovascular system. This study investigated their functional expression in porcine isolated pancreatic arteries. Pancreatic arteries (endothelium intact or denuded) were prepared for isometric tension recording and preconstricted with U46619, a thromboxane A2 mimetic; adenosine-5′-diphosphate (ADP), uridine-5′-triphosphate (UTP) and MRS2768, a selective P2Y2 agonist, were applied cumulatively, while adenosine-5′-triphosphate (ATP) and αβ-methylene-ATP (αβ-meATP) response curves were generated from single concentrations per tissue segment. Antagonists/enzyme inhibitors were applied prior to U46619 addition. ATP, αβ-meATP, UTP and MRS2768 induced vasoconstriction, with a potency order of αβ-meATP > MRS2768 > ATP ≥ UTP. Contractions to ATP and αβ-meATP were blocked by NF449, a selective P2X1 receptor antagonist. The contraction induced by ATP, but not UTP, was followed by vasorelaxation. Endothelium removal and DUP 697, a cyclooxygenase-2 inhibitor, had no significant effect on contraction to ATP but attenuated that to UTP, indicating actions at distinct receptors. MRS2578, a selective P2Y6 receptor antagonist, had no effect on contractions to UTP. ADP induced endothelium-dependent vasorelaxation which was inhibited by MRS2179, a selective P2Y1 receptor antagonist, or SCH58261, a selective adenosine A2A receptor antagonist. The contractions to ATP and αβ-meATP were attributed to actions at P2X1 receptors on the vascular smooth muscle, whereas it was shown for the first time that UTP induced an endothelium-dependent vasoconstriction which may involve P2Y2 and/or P2Y4 receptors. The relaxation induced by ADP is mediated by P2Y1 and A2A adenosine receptors. Porcine pancreatic arteries appear to lack vasorelaxant P2Y2 and P2Y4 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

αβ-meATP:

αβ-Methylene-adenosine-5′-triphosphate

ADP:

Adenosine-5′-diphosphate

ATP:

Adenosine-5′-triphosphate

ENTPDase:

Ecto-nucleotidase 5′-triphosphate diphosphohydrolase

PPADS:

Pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid

UTP:

Uridine-5′-triphosphate

VSMCs:

Vascular smooth muscle cells

XAC:

Xanthine amine congener

References

  1. Novak I (2008) Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 4(3):237–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Burnstock G, Novak I (2012) Purinergic signalling in the pancreas in health and disease. J Endocrinol 213(2):123–141

    Article  CAS  PubMed  Google Scholar 

  3. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Séguéla P et al (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53(1):107–118

    CAS  PubMed  Google Scholar 

  4. Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C et al (2006) International union of pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kasakov L, Burnstock G (1982) The use of the slowly degradable analog, α,β-methylene ATP, to produce desensitisation of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur J Pharmacol 86(2):291–294

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1):58–86

    Article  CAS  PubMed  Google Scholar 

  7. Kügelgen I (2008) Pharmacology of mammalian P2X and P2Y receptors. Biotrend Reviews, no. 3

  8. Communi D, Govaerts C, Parmentier M, Boeynaems J-M (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272(51):31969–31973

    Article  CAS  PubMed  Google Scholar 

  9. Qi A-D, Zambon AC, Insel PA, Nicholas RA (2001) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60(6):1375–1382

    CAS  PubMed  Google Scholar 

  10. Léon C, Hechler B, Vial C, Leray C, Cazenave J-P, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403(1):26–30

    Article  PubMed  Google Scholar 

  11. Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK (2003) Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 64(5):1210–1216

    Article  CAS  PubMed  Google Scholar 

  12. Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P et al (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64(1):104–112

    Article  CAS  PubMed  Google Scholar 

  13. Waldo GL, Harden TK (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65(2):426–436

    Article  CAS  PubMed  Google Scholar 

  14. Nicholas RA, Lazarowski ER, Watt WC, Li Q, Boyer J, Harden TK (1996) Pharmacological and second messenger signalling selectivities of cloned P2Y receptors. J Auton Pharmacol 16(6):319–323

    Article  CAS  PubMed  Google Scholar 

  15. Carter RL, Fricks IP, Barrett MO, Burianek LE, Zhou Y, Ko H et al (2009) Quantification of Gi-mediated inhibition of adenylyl cyclase activity reveals that UDP is a potent agonist of the human P2Y14 receptor. Mol Pharmacol 76(6):1341–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Coutinho-Silva R, Parsons M, Robson T, Lincoln J, Burnstock G (2003) P2X and P2Y purinoceptor expression in pancreas from streptozotocin-diabetic rats. Mol Cell Endocrinol 204(1–2):141–154

    Article  CAS  PubMed  Google Scholar 

  17. Hillaire-Buys D, Chapal J, Petit P, Loubatières-Mariani M-M (1991) Dual regulation of pancreatic vascular tone by P2X and P2Y purinoceptor subtypes. Eur J Pharmacol 199(3):309–314

    Article  CAS  PubMed  Google Scholar 

  18. Hillaire-Buys D, Dietz S, Chapal J, Petit P, Loubatieres-Mariani MM (1999) Involvement of P2X and P2U receptors in the constrictor effect of ATP on the pancreatic vascular bed. Journal de la Societe de Biologie 193(1):57–61

    CAS  PubMed  Google Scholar 

  19. Alsaqati M, Chan SLF, Ralevic R (2011) Characterisation of the response to ADP in porcine isolated pancreatic arteries. http://www.pa2online.org/abstracts/vol8issue1abst028p.pdf. Accessed 22 April 2013

  20. Rayment SJ, Ralevic V, Barrett DA, Cordell R, Alexander SPH (2007) A novel mechanism of vasoregulation: ADP-induced relaxation of the porcine isolated coronary artery is mediated via adenosine release. FASEB J 21(2):577–585

    Article  CAS  PubMed  Google Scholar 

  21. Kügelgen I, Häussinger D, Starker K (1987) Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn Schmiedeberg’s Arch Pharmacol 336(5):556–560

    Article  Google Scholar 

  22. Ralevic V, Burnstock G (1991) Effects of purines and pyrimidines on the rat mesenteric arterial bed. Circ Res 69(6):1583–1590

    Article  CAS  PubMed  Google Scholar 

  23. Rubino A, Burnstock G (1996) Evidence for a P2-purinoceptor mediating vasoconstriction by UTP, ATP and related nucleotides in the isolated pulmonary vascular bed of the rat. Br J Pharmacol 118(6):1415–1420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Korchazhkina O, Wright G, Exley C (1999) Intravascular ATP and coronary vasodilation in the isolated working rat heart. Br J Pharmacol 127(3):701–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ralevic V, Burnstock G (1996) Relative contribution of P2U- and P2Y-purinoceptors to endothelium-dependent vasodilatation in the golden hamster isolated mesenteric arterial bed. Br J Pharmacol 117(8):1797–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg’s Arch Pharmacol 362(4–5):299–309

    Article  CAS  Google Scholar 

  27. Stanford SJ, Mitchell JA (1998) ATP-induced vasodilatation in the rat isolated mesenteric bed exhibits two apparent phases. Br J Pharmacol 125:94P

    Google Scholar 

  28. Ralevic V (2001) Mechanism of prolonged vasorelaxation to ATP in the rat isolated mesenteric arterial bed. Br J Pharmacol 132(3):685–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ralevic V (2002) The involvement of smooth muscle P2X receptors in the prolonged vasorelaxation response to purine nucleotides in the rat mesenteric arterial bed. Br J Pharmacol 135(8):1988–1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Burnstock G, Williams M (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295(3):862–869

    CAS  PubMed  Google Scholar 

  31. Burnstock G (2007) Purine and pyrimidine receptors. CMLS 64(12):1471–1483

    Article  CAS  PubMed  Google Scholar 

  32. Ko H, Carter RL, Cosyn L, Petrelli R, de Castro S, Besada P et al (2008) Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists. Bioorg Med Chem 16(12):6319–6332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hartley SA, Kato K, Salter KJ, Kozlowski RZ (1998) Functional evidence for a novel suramin-insensitive pyrimidine receptor in rat small pulmonary arteries. Circ Res 83(9):940–946

    Article  CAS  PubMed  Google Scholar 

  34. Miyagi Y, Zhang JH (2004) α,β-Methylene ATP enhances P2Y4 contraction of rabbit basilar artery. Am J Physiol Heart Circ Physiol 286(4):H1546–H1551

    Article  CAS  PubMed  Google Scholar 

  35. Qasabian RA, Schyvens C, Owe-Young R, Killen JP, Macdonald PS, Conigrave AD et al (1997) Characterization of the P2 receptors in rabbit pulmonary artery. Br J Pharmacol 120(4):553–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Miyagi Y, Kobayashi S, Nishimura J, Fukui M, Kanaide H (1996) Dual regulation of cerebrovascular tone by UTP: P2U receptor-mediated contraction and endothelium-dependent relaxation. Br J Pharmacol 118(4):847–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Knight GE, Oliver-Redgate R, Burnstock G (2003) Unusual absence of endothelium-dependent or -independent vasodilatation to purines or pyrimidines in the rat renal artery. Kidney Int 64(4):1389–1397

    Article  CAS  PubMed  Google Scholar 

  38. Mombouli JV, Vanhoutte PM (1993) Purinergic endothelium-dependent and -independent contractions in rat aorta. Hypertension 22(4):577–583

    Article  CAS  PubMed  Google Scholar 

  39. Wong SL, Leung FP, Lau CW, Au CL, Yung LM, Yao X et al (2009) Cyclooxygenase-2-derived prostaglandin F2alpha mediates endothelium-dependent contractions in the aortae of hamsters with increased impact during aging. Circ Res 104(2):228–235

    Article  CAS  PubMed  Google Scholar 

  40. Dol-Gleizes F, Mares AM, Savi P, Herbert JM (1999) Relaxant effect of 2-methyl-thio-adenosine diphosphate on rat thoracic aorta: effect of clopidogrel. Eur J Pharmacol 367(2–3):247–253

    Article  CAS  PubMed  Google Scholar 

  41. Alefishat E, Alexander S, Ralevic V (2010) Effect of palmitoyl CoA on ADP-evoked vasorelaxations in porcine isolated coronary and mesenteric arteries. http://www.fasebj.org/cgi/content/meeting_abstract/24/1_MeetingAbstracts/lb426. Accessed 22 April 2013

  42. Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  CAS  PubMed  Google Scholar 

  43. Chapal J, Loubatieres-Mariani MM (1983) Evidence for purinergic receptors on vascular smooth muscle in rat pancreas. Eur J Pharmacol 87(4):423–430

    Article  CAS  PubMed  Google Scholar 

  44. Satoh A, Shimosegawa T, Satoh K, Ito H, Kohno Y, Masamune A et al (2000) Activation of adenosine A1-receptor pathway induces edema formation in the pancreas of rats. Gastroenterology 119(3):829–836

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen NC, Taalab K, Osman MM (2010) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res Off J Am Assoc Cancer Res 16(1):367, 567

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Damascus University in Syria for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ralevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsaqati, M., Chan, S.L.F. & Ralevic, V. Investigation of the functional expression of purine and pyrimidine receptors in porcine isolated pancreatic arteries. Purinergic Signalling 10, 241–249 (2014). https://doi.org/10.1007/s11302-013-9403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9403-2

Keywords

Navigation