Skip to main content
Log in

Short-term potentiation of membrane resealing in neighboring cells is mediated by purinergic signaling

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Resealing of a disrupted plasma membrane in the micron-size range requires Ca2+-regulated exocytosis. When cells are wounded twice, the second membrane disruption reseals more quickly than the initial wound. This response is protein kinase C (PKC)-dependent and protein kinase A-dependent in the early stages. In the long term (24 h), potentiation of membrane resealing in a wounded cell depends on gene expression mediated by a transcription factor, cyclic adenosine monophosphate response element binding protein (CREB), which is activated by a PKC-dependent and p38 mitogen-activated protein kinase-dependent pathway. In addition, a recent study demonstrated that wounding of Madin–Darby canine kidney (MDCK) cells potentiates membrane resealing in neighboring cells by activating CREB-dependent gene expression through nitric oxide (NO) signaling. The present study demonstrated that wounding of MDCK cells induces short-term potentiation of membrane resealing in neighboring cells in addition to a long-term response. Inhibition of purinergic signaling suppressed short-term potentiation of membrane resealing in neighboring cells, but not long-term potentiation. By contrast, inhibition of NO signaling did not suppress the short-term response in neighboring cells. These results suggest that cell membrane disruption stimulates at least two intercellular signaling pathways, NO and purinergic signaling, to potentiate cell membrane resealing in neighboring cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19:697–731. doi:10.1146/annurev.cellbio.19.111301.140101

    Article  CAS  PubMed  Google Scholar 

  2. Steinhardt RA, Bi G-Q, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393. doi:10.1126/science.7904084

    Article  CAS  PubMed  Google Scholar 

  3. Miyake K, McNeil PL (1995) Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol 131:1737–1745. doi:10.1083/jcb.131.6.1737

    Article  CAS  PubMed  Google Scholar 

  4. Bi G-Q, Alderton JM, Steinhardt RA (1995) Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 131:1747–1758. doi:10.1083/jcb.131.6.1747

    Article  CAS  PubMed  Google Scholar 

  5. Bi G-Q, Morris RL, Liao G, Alderton JM, Scholey JM, Steinhardt RA (1997) Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Biol 138:999–1008. doi:10.1083/jcb.138.5.999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Togo T, Alderton JM, Bi G-Q, Steinhardt RA (1999) The mechanism of facilitated cell membrane resealing. J Cell Sci 112:719–731

    CAS  PubMed  Google Scholar 

  7. Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell membrane repair. Mol Biol Cell 11:4339–4346. doi:10.1091/mbc.11.12.4339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106:157–169. doi:10.1016/S0092-8674(01)00421-4

    Article  CAS  PubMed  Google Scholar 

  9. Togo T, Alderton JM, Steinhardt RA (2003) Long-term potentiation of exocytosis and cell membrane repair in fibroblasts. Mol Biol Cell 14:93–106. doi:10.1091/mbc.E02-01-0056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Togo T, Steinhardt RA (2004) Nonmuscle myosin IIA and IIB have distinct functions in the exocytosis-dependent process of cell membrane repair. Mol Biol Cell 15:688–695. doi:10.1091/mbc.E03-06-0430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Togo T (2004) Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem 279:44996–45003. doi:10.1074/jbc.M406327200

    Article  CAS  PubMed  Google Scholar 

  12. Shen SS, Steinhardt RA (2005) The mechanisms of cell membrane resealing in rabbit corneal epithelial cells. Curr Eye Res 30:543–554. doi:10.1080/02713680590968574

    Article  CAS  PubMed  Google Scholar 

  13. Togo T (2012) Cell membrane disruption stimulates NO/PKG signaling and potentiates cell membrane repair in neighboring cells. PLoS ONE 7:e42885. doi:10.1371/journal.pone.0042885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Togo T (2006) Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J Cell Sci 119:2780–2786. doi:10.1242/jcs.03006

    Article  CAS  PubMed  Google Scholar 

  15. Covian-Nares JF, Koushik SV, Puhl HL III, Vogel SS (2010) Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling. J Cell Sci 123:1884–1893. doi:10.1242/jcs.066084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Boyd IA, Forrester T (1968) The release of adenosine triphosphate from frog skeletal muscle in vitro. J Physiol 199:115–135

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sammak PJ, Hinman LE, Tran PO, Sjaastad MD, Machen TE (1997) How do injured cells communicate with the surviving cell monolayer? J Cell Sci 110:465–475

    CAS  PubMed  Google Scholar 

  18. Nielsen MS, Nygaard Axelsen L, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH (2012) Gap junctions. Compr Physiol 2:1981–2035. doi:10.1002/cphy.c110051

    PubMed  Google Scholar 

  19. Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662:61–80. doi:10.1016/j.bbamem.2003.10.020

    Article  CAS  PubMed  Google Scholar 

  20. Gillis KD, Mößner R, Neher E (1996) Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16:1209–1220

    Article  CAS  PubMed  Google Scholar 

  21. Nagy G, Reim K, Matti U, Brose N, Binz T, Rettig J, Neher E, Sorensen JB (2004) Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 41:417–429. doi:10.1016/S0896-6273(04)00038-8

    Article  CAS  PubMed  Google Scholar 

  22. Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124:653–662. doi:10.1085/jgp.200409082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yang Y, Gillis KD (2004) A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124:641–651. doi:10.1085/jgp.200409081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176. doi:10.1016/j.tips.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock G (2011) Introductory overview of purinergic signalling. Front Biosci (Elite Ed) 3:896–900. doi:10.2741/298

    Google Scholar 

  26. Post SR, Rump LC, Zambon A, Hughes RJ, Buda MD, Jacobson JP, Kao CC, Insel PA (1998) ATP activates cAMP production via multiple purinergic receptors in MDCK-D1 epithelial cells. Blockade of an autocrine/paracrine pathway to define receptor preference of an agonist. J Biol Chem 273:23093–23097. doi:10.1074/jbc.273.36.23093

    Article  CAS  PubMed  Google Scholar 

  27. Balboa MA, Firestein BL, Godson C, Bell KS, Insel PA (1994) Protein kinase Cα mediates phospholipase D activation by nucleotides and phorbol ester in Madin–Darby canine kidney cells. Stimulation of phospholipase D is independent of activation of polyphosphoinositide-specific phospholipase C and phospholipase A2. J Biol Chem 269:10511–10516

    CAS  PubMed  Google Scholar 

  28. Post SR, Jacobson JP, Insel PA (1996) P2 purinergic receptor agonists enhance cAMP production in Madin–Darby canine kidney epithelial cells via an autocrine/paracrine mechanism. J Biol Chem 271:2029–2032. doi:10.1074/jbc.271.4.2029

    Article  CAS  PubMed  Google Scholar 

  29. Trump BF, Berezesky IK (1996) The mechanisms of calcium-mediated cell injury and cell death. New Horiz 4:139–150

    CAS  PubMed  Google Scholar 

  30. Kermer P, Klocker N, Bahr M (1999) Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res 298:383–395

    Article  CAS  PubMed  Google Scholar 

  31. Weber JT (2004) Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res 1:151–171. doi:10.2174/1567202043480134

    Article  PubMed  Google Scholar 

  32. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15:404–414. doi:10.2174/092986708783497337

    Article  CAS  PubMed  Google Scholar 

  33. Weber JT (2012) Altered calcium signaling following traumatic brain injury. Front Pharmacol 3:60. doi:10.3389/fphar.2012.00060

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by JSPS KAKENHI Grant number 22570193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuru Togo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togo, T. Short-term potentiation of membrane resealing in neighboring cells is mediated by purinergic signaling. Purinergic Signalling 10, 283–290 (2014). https://doi.org/10.1007/s11302-013-9387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9387-y

Keywords

Navigation