Skip to main content
Log in

P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Adenine and uridine nucleotides evoke Ca2+ signals via four subtypes of P2Y receptor in cultured aortic smooth muscle cells, but the mechanisms underlying the different patterns of these Ca2+ signals are unresolved. Cytosolic Ca2+ signals were recorded from single cells and populations of cultured rat aortic smooth muscle cells, loaded with a fluorescent Ca2+ indicator and stimulated with agonists that allow subtype-selective activation of P2Y1, P2Y2, P2Y4, or P2Y6 receptors. Activation of P2Y1, P2Y2, and P2Y6 receptors caused homologous desensitisation, while activation of P2Y2 receptors also caused heterologous desensitisation of the other subtypes. The Ca2+ signals evoked by each P2Y receptor subtype required activation of phospholipase C and release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate (IP3) receptors, but they were unaffected by inhibition of ryanodine or nicotinic acid adenine dinucleotide phosphate (NAADP) receptors. Sustained Ca2+ signals were independent of the Na+/Ca2+ exchanger and were probably mediated by store-operated Ca2+ entry. Analyses of single cells established that most cells express P2Y2 receptors and at least two other P2Y receptor subtypes. We conclude that four P2Y receptor subtypes evoke Ca2+ signals in cultured aortic smooth muscle cells using the same intracellular (IP3 receptors) and Ca2+ entry pathways (store-operated Ca2+ entry). Different rates of homologous desensitisation and different levels of receptor expression account for the different patterns of Ca2+ signal evoked by each P2Y receptor subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456:769–785

    Article  PubMed  CAS  Google Scholar 

  2. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  3. Vallot O, Combettes L, Jourdon P, Inamo J, Marty I, Claret M, Lompre AM (2000) Intracellular Ca2+ handling in vascular smooth muscle cells is affected by proliferation. Pflugers Arch 20:1225–1235

    CAS  Google Scholar 

  4. Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol 295:C779–C790

    Article  CAS  Google Scholar 

  5. Thyberg J (1996) Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol 169:183–265

    Article  PubMed  CAS  Google Scholar 

  6. Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Artero Thromb Vasc Biol 23:1510–1520

    Article  CAS  Google Scholar 

  7. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  8. Burnstock G (2002) Purinergic signaling and vascular cell proliferation and death. Artero Thromb Vasc Biol 22:364–373

    Article  Google Scholar 

  9. Vial C, Evans RJ (2002) P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62:1438–1445

    Article  PubMed  CAS  Google Scholar 

  10. Govindan S, Taylor EJA, Taylor CW (2010) Ca2+ signalling by P2Y receptors in cultured rat aortic smooth muscle cells. Br J Pharmacol 160:1953–1962

    Article  PubMed  CAS  Google Scholar 

  11. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  12. Erlinge D, Hou M, Webb TE, Barnard EA, Moller S (1998) Phenotype changes of the vascular smooth muscle cell regulate P2 receptor expression as measured by quantitative RT-PCR. Biochem Biophys Res Commun 248:864–870

    Article  PubMed  CAS  Google Scholar 

  13. Chhatriwala M, Ravi RG, Patel RI, Boyer JL, Jacobson KA, Harden TK (2004) Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. J Pharmacol Exp Ther 311:1038–1043

    Article  PubMed  CAS  Google Scholar 

  14. Jacobson KA, Costanzi S, Ivanov AA, Tchilibon S, Besada P, Gao ZG, Maddileti S, Harden TK (2006) Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochem Pharmacol 71:540–549

    Article  PubMed  CAS  Google Scholar 

  15. Fricks IP, Maddileti S, Carter RL, Lazarowski ER, Nicholas RA, Jacobson KA, Harden TK (2008) UDP is a competitive antagonist at the human P2Y14 receptor. J Pharmacol Exp Ther 325:588–594

    Article  PubMed  CAS  Google Scholar 

  16. Brinson AE, Harden TK (2001) Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. Ser-333 and Ser-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 276:11939–11948

    Article  PubMed  CAS  Google Scholar 

  17. Robaye B, Boeynaems JM, Communi D (1997) Slow desensitization of the human P2Y6 receptor. Eur J Pharmacol 329:231–236

    PubMed  CAS  Google Scholar 

  18. Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA (2000) ATP, an agonist at the rat P2Y4 receptor, is an antagonist at the human P2Y4 receptor. Mol Pharmacol 57:926–931

    PubMed  CAS  Google Scholar 

  19. Brass D, Grably MR, Bronstein-Sitton N, Gohar O, Meir A (2011) Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 8:61–79

    Article  PubMed  Google Scholar 

  20. Lesh RE, Nixon GF, Fleischer S, Airey JA, Somlyo AP, Somlyo AV (1998) Localization of ryanodine receptors in smooth muscle. Circl Res 82:175–185

    Article  CAS  Google Scholar 

  21. Thai TL, Churchill GC, Arendshorst WJ (2009) NAADP receptors mediate calcium signaling stimulated by endothelin-1 and norepinephrine in renal afferent arterioles. Am J Physiol 297:F510–F516

    Article  CAS  Google Scholar 

  22. Taylor CW, Broad LM (1998) Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls. Trends Pharmacol Sci 19:370–375

    Article  PubMed  CAS  Google Scholar 

  23. Santonastasi M, Wehrens XH (2007) Ryanodine receptors as pharmacological targets for heart disease. Acta Pharm Sinica 28:937–944

    Article  CAS  Google Scholar 

  24. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–226

    Article  PubMed  CAS  Google Scholar 

  25. Brailoiu E, Rahman T, Churamani D, Prole DL, Brailoiu GC, Taylor CW, Patel S (2010) An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J Biol Chem 285:38611–38616

    Google Scholar 

  26. Taylor CW, Tovey SC (2010) IP3 receptors: toward understanding their activation. Cold Spring Harb Persp Biol 2:a004010

    Article  CAS  Google Scholar 

  27. Peppiatt CM, Collins TJ, Mackenzie L, Conway SJ, Holmes AB, Bootman MD, Berridge MJ, Seo JT, Roderick HL (2003) 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34:97–108

    Article  PubMed  CAS  Google Scholar 

  28. Missiaen L, Callewaert G, De Smedt H, Parys JB (2001) 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores of permeabilized A7r5 cells. Cell Calcium 29:111–116

    Article  PubMed  CAS  Google Scholar 

  29. Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, Fleig A, Penner R, Mikoshiba K (2010) Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins. Cell Calcium 47:1–10

    Article  PubMed  CAS  Google Scholar 

  30. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150

    Article  PubMed  CAS  Google Scholar 

  31. Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C (2007) Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 352:130–134

    Article  PubMed  CAS  Google Scholar 

  32. Syyong HT, Poburko D, Fameli N, van Breemen C (2007) ATP promotes NCX-reversal in aortic smooth muscle cells by DAG-activated Na+ entry. Biochem Biophys Res Commun 357:1177–1182

    Article  PubMed  CAS  Google Scholar 

  33. Iwamoto T, Watano T, Shigekawa M (1996) A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397

    Article  PubMed  CAS  Google Scholar 

  34. Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23:2425–2437

    Article  PubMed  CAS  Google Scholar 

  35. Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol 517:121–134

    Article  PubMed  CAS  Google Scholar 

  36. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  PubMed  CAS  Google Scholar 

  37. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19

    Article  PubMed  CAS  Google Scholar 

  38. Peinelt C, Lis A, Beck A, Fleig A, Penner R (2008) 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 586:3061–3073

    Article  PubMed  CAS  Google Scholar 

  39. Bisaillon JM, Motiani RK, Gonzalez-Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd'heuil D, Trebak M (2010) Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am J Physiol 298:C993–C1005

    Article  CAS  Google Scholar 

  40. Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA (2009) Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol 297:C1103–C1112

    Article  CAS  Google Scholar 

  41. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446:284–287

    Article  PubMed  CAS  Google Scholar 

  42. Bolotina VM (2008) Orai, STIM1 and iPLA2β: a view from a different perspective. J Physiol 586:3035–3042

    Article  PubMed  CAS  Google Scholar 

  43. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448

    Article  PubMed  CAS  Google Scholar 

  44. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104:4682–4687

    Article  PubMed  CAS  Google Scholar 

  45. Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583:25–36

    Article  PubMed  CAS  Google Scholar 

  46. Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560

    Article  PubMed  CAS  Google Scholar 

  47. Rodriguez-Rodriguez R, Yarova P, Winter P, Dora KA (2009) Desensitization of endothelial P2Y1 receptors by PKC-dependent mechanisms in pressurized rat small mesenteric arteries. Br J Pharmacol 158:1609–1620

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council [0700843] and the Wellcome Trust [085295]. We thank Emily Taylor for assistance with experiments and Mohamed Trebak (Albany Medical College, USA) for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin W. Taylor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindan, S., Taylor, C.W. P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signalling 8, 763–777 (2012). https://doi.org/10.1007/s11302-012-9323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9323-6

Keywords

Navigation