Skip to main content

Advertisement

Log in

Neuroprotective roles of the P2Y2 receptor

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y2 receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer’s disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y2 receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    PubMed  CAS  Google Scholar 

  2. Sak K, Webb TE (2002) A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 397(1):131–136

    PubMed  CAS  Google Scholar 

  3. Inbe H, Watanabe S, Miyawaki M, Tanabe E, Encinas JA (2004) Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem 279(19):19790–19799

    PubMed  CAS  Google Scholar 

  4. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    PubMed  CAS  Google Scholar 

  5. Turner JT, Weisman GA, Landon LA, Park M, Camden JM (1998) Salivary gland nucleotide receptors: evidence for functional expression of both P2X and P2Y subtypes. Eur J Morphol 36(Suppl):170–175

    PubMed  Google Scholar 

  6. Weisman GA, Yu N, Liao Z, Gonzalez F, Erb L, Seye CI (2006) P2 receptors in health and disease. Biotechnol Genet Eng Rev 22:171–195

    PubMed  CAS  Google Scholar 

  7. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflugers Arch 452(5):552–562

    PubMed  CAS  Google Scholar 

  8. Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6(4):526–532

    PubMed  CAS  Google Scholar 

  9. Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19(1):13–18

    PubMed  CAS  Google Scholar 

  10. Illes P, Alexandre Ribeiro J (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483(1):5–17

    PubMed  CAS  Google Scholar 

  11. Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32(4):189–198

    PubMed  CAS  Google Scholar 

  12. Koles L, Leichsenring A, Rubini P, Illes P (2011) P2 receptor signaling in neurons and glial cells of the central nervous system. Adv Pharmacol 61:441–493

    PubMed  Google Scholar 

  13. Burgos M, Neary JT, Gonzalez FA (2007) P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 103(5):1785–1800

    PubMed  CAS  Google Scholar 

  14. Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci 65(19):3074–3080

    PubMed  CAS  Google Scholar 

  15. Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41(2–3):356–366

    PubMed  CAS  Google Scholar 

  16. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1):1–7

    PubMed  CAS  Google Scholar 

  17. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26(8–9):959–969

    PubMed  CAS  Google Scholar 

  18. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron–glial networks. Semin Cell Dev Biol 22(2):205–213

    PubMed  CAS  Google Scholar 

  19. Molliver DC, Cook SP, Carlsten JA, Wright DE, McCleskey EW (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16(10):1850–1860

    PubMed  Google Scholar 

  20. Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31(1–3):169–183

    PubMed  CAS  Google Scholar 

  21. Soltoff SP (1998) Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. J Biol Chem 273(36):23110–23117

    PubMed  CAS  Google Scholar 

  22. Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Perez LI, Gonzalez FA, Seye CI, Weisman GA, Erb L (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279(9):8212–8218

    PubMed  CAS  Google Scholar 

  23. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with αvβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153(3):491–501

    PubMed  CAS  Google Scholar 

  24. Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with αv integrins to activate Go and induce cell migration. J Biol Chem 280(47):39050–39057

    PubMed  CAS  Google Scholar 

  25. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109(3):297–324

    PubMed  CAS  Google Scholar 

  26. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 3(125):ra45

    PubMed  Google Scholar 

  27. Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci U S A 102(52):19138–19143

    PubMed  CAS  Google Scholar 

  28. Homolya L, Watt WC, Lazarowski ER, Koller BH, Boucher RC (1999) Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from normal and P2Y2 receptor−/− mice. J Biol Chem 274(37):26454–26460

    PubMed  CAS  Google Scholar 

  29. Burnstock G, Fredholm BB, North RA, Verkhratsky A (2010) The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 199(2):93–147

    CAS  Google Scholar 

  30. Novak I (2008) Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 4(3):237–253

    PubMed  CAS  Google Scholar 

  31. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9

    PubMed  CAS  Google Scholar 

  32. Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42(1):3–8

    PubMed  CAS  Google Scholar 

  33. Burnstock G, Dumsday B, Smythe A (1972) Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 44(3):451–461

    PubMed  CAS  Google Scholar 

  34. Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129(6):485–491

    PubMed  CAS  Google Scholar 

  35. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278(2):1354–1362

    PubMed  CAS  Google Scholar 

  36. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528

    PubMed  CAS  Google Scholar 

  37. Iwabuchi S, Kawahara K (2011) Functional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes. Neurochem Int 58(3):376–384

    PubMed  CAS  Google Scholar 

  38. Camden JM, Schrader AM, Camden RE, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J Biol Chem 280(19):18696–18702

    PubMed  CAS  Google Scholar 

  39. Villa G, Fumagalli M, Verderio C, Abbracchio MP, Ceruti S (2010) Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. Neuron Glia Biol 6(1):31–42

    PubMed  Google Scholar 

  40. Tran MD (2011) P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes. Neurosci Lett 492(3):155–159

    PubMed  CAS  Google Scholar 

  41. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43(3):218–303

    PubMed  Google Scholar 

  42. Kreda SM, Seminario-Vidal L, Heusden C, Lazarowski ER (2008) Thrombin-promoted release of UDP-glucose from human astrocytoma cells. Br J Pharmacol 153(7):1528–1537

    PubMed  CAS  Google Scholar 

  43. Brandenburg LO, Jansen S, Wruck CJ, Lucius R, Pufe T (2010) Antimicrobial peptide rCRAMP induced glial cell activation through P2Y receptor signalling pathways. Mol Immunol 47(10):1905–1913

    PubMed  CAS  Google Scholar 

  44. Carter RL, Fricks IP, Barrett MO, Burianek LE, Zhou Y, Ko H, Das A, Jacobson KA, Lazarowski ER, Harden TK (2009) Quantification of Gi-mediated inhibition of adenylyl cyclase activity reveals that UDP is a potent agonist of the human P2Y14 receptor. Mol Pharmacol 76(6):1341–1348

    PubMed  CAS  Google Scholar 

  45. Lenz G, Gottfried C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT (2000) P2Y purinoceptor subtypes recruit different mek activators in astrocytes. Br J Pharmacol 129(5):927–936

    PubMed  CAS  Google Scholar 

  46. Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141(7):1106–1117

    PubMed  CAS  Google Scholar 

  47. Kong Q, Wang M, Liao Z, Camden JM, Yu S, Simonyi A, Sun GY, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons. Purinergic Signal 1(4):337–347

    PubMed  CAS  Google Scholar 

  48. Kong Q, Peterson TS, Baker O, Stanley E, Camden J, Seye CI, Erb L, Simonyi A, Wood WG, Sun GY, Weisman GA (2009) Interleukin-1β enhances nucleotide-induced and α-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y2 receptor. J Neurochem 109(5):1300–1310

    PubMed  CAS  Google Scholar 

  49. Espada S, Ortega F, Molina-Jijon E, Rojo AI, Perez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A (2010) The purinergic P2Y13 receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic Biol Med 49(3):416–426

    PubMed  CAS  Google Scholar 

  50. Wang L, Jacobsen SE, Bengtsson A, Erlinge D (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16

    PubMed  Google Scholar 

  51. Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, Gudbjartsson T, Jern S, Erlinge D (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40(6):841–853

    PubMed  CAS  Google Scholar 

  52. Grassi F (2010) Purinergic control of neutrophil activation. J Mol Cell Biol 2(4):176–177

    PubMed  CAS  Google Scholar 

  53. Sun WC, Berghaus LJ, Moore JN, Hurley DJ, Vandenplas ML, Thompson R, Linden J (2010) Lipopolysaccharide and TNF-alpha modify adenosine A2A receptor expression and function in equine monocytes. Vet Immunol Immunopathol 135(3–4):289–295

    PubMed  CAS  Google Scholar 

  54. Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB (2009) Caffeine modulates TNF-α production by cord blood monocytes: the role of adenosine receptors. Pediatr Res 65(2):203–208

    PubMed  CAS  Google Scholar 

  55. Rizzo R, Ferrari D, Melchiorri L, Stignani M, Gulinelli S, Baricordi OR, Di Virgilio F (2009) Extracellular ATP acting at the P2X7 receptor inhibits secretion of soluble HLA-G from human monocytes. J Immunol 183(7):4302–4311

    PubMed  CAS  Google Scholar 

  56. Ben Yebdri F, Kukulski F, Tremblay A, Sevigny J (2009) Concomitant activation of P2Y2 and P2Y6 receptors on monocytes is required for TLR1/2-induced neutrophil migration by regulating IL-8 secretion. Eur J Immunol 39(10):2885–2894

    PubMed  CAS  Google Scholar 

  57. Liu GD, Ding JQ, Xiao Q, Chen SD (2009) P2Y6 receptor and immunoinflammation. Neurosci Bull 25(3):161–164

    PubMed  CAS  Google Scholar 

  58. Papp L, Balazsa T, Kofalvi A, Erdelyi F, Szabo G, Vizi ES, Sperlagh B (2004) P2X receptor activation elicits transporter-mediated noradrenaline release from rat hippocampal slices. J Pharmacol Exp Ther 310(3):973–980

    PubMed  CAS  Google Scholar 

  59. Sperlagh B, Vizi ES (1991) Effect of presynaptic P2 receptor stimulation on transmitter release. J Neurochem 56(5):1466–1470

    PubMed  CAS  Google Scholar 

  60. Sperlagh B, Illes P (2007) Purinergic modulation of microglial cell activation. Purinergic Signal 3(1–2):117–127

    PubMed  CAS  Google Scholar 

  61. Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator. Life Sci 68(2):119–137

    PubMed  CAS  Google Scholar 

  62. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25(27):6286–6295

    PubMed  CAS  Google Scholar 

  63. Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Pflugers Arch 452(5):538–551

    PubMed  CAS  Google Scholar 

  64. Fischer W, Krugel U (2007) P2Y receptors: focus on structural, pharmacological and functional aspects in the brain. Curr Med Chem 14(23):2429–2455

    PubMed  CAS  Google Scholar 

  65. Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521(1–3):34–38

    PubMed  CAS  Google Scholar 

  66. Bianco F, Fumagalli M, Pravettoni E, D’Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48(2):144–156

    PubMed  CAS  Google Scholar 

  67. Crain JM, Nikodemova M, Watters JJ (2009) Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 6:24

    PubMed  Google Scholar 

  68. Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y nucleotide receptor interaction with αv integrin mediates astrocyte migration. J Neurochem 95(3):630–640

    PubMed  CAS  Google Scholar 

  69. Czajkowski R, Lei L, Sabala P, Baranska J (2002) ADP-evoked phospholipase C stimulation and adenylyl cyclase inhibition in glioma C6 cells occur through two distinct nucleotide receptors, P2Y1 and P2Y12. FEBS Lett 513(2–3):179–183

    PubMed  CAS  Google Scholar 

  70. Nicholas RA, Lazarowski ER, Watt WC, Li Q, Boyer J, Harden TK (1996) Pharmacological and second messenger signalling selectivities of cloned P2Y receptors. J Auton Pharmacol 16(6):319–323

    PubMed  CAS  Google Scholar 

  71. Boyer JL, Zohn IE, Jacobson KA, Harden TK (1994) Differential effects of P2-purinoceptor antagonists on phospholipase C- and adenylyl cyclase-coupled P2Y-purinoceptors. Br J Pharmacol 113(2):614–620

    PubMed  CAS  Google Scholar 

  72. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39(3):190–208

    PubMed  CAS  Google Scholar 

  73. Lustig KD, Erb L, Landis DM, Hicks-Taylor CS, Zhang X, Sportiello MG, Weisman GA (1992) Mechanisms by which extracellular ATP and UTP stimulate the release of prostacyclin from bovine pulmonary artery endothelial cells. Biochim Biophys Acta 1134(1):61–72

    PubMed  CAS  Google Scholar 

  74. Erb L, Lustig KD, Sullivan DM, Turner JT, Weisman GA (1993) Functional expression and photoaffinity labeling of a cloned P2U purinergic receptor. Proc Natl Acad Sci U S A 90(22):10449–10453

    PubMed  CAS  Google Scholar 

  75. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid β requires P2X7 receptor expression. J Immunol 182(7):4378–4385

    PubMed  CAS  Google Scholar 

  76. Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32(2):79–87

    PubMed  Google Scholar 

  77. Fujita T, Tozaki-Saitoh H, Inoue K (2009) P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57(3):244–257

    PubMed  Google Scholar 

  78. Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA (2003) Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 65(6):923–931

    PubMed  CAS  Google Scholar 

  79. Chorna NE, Santiago-Perez LI, Erb L, Seye CI, Neary JT, Sun GY, Weisman GA, Gonzalez FA (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91(1):119–132

    PubMed  CAS  Google Scholar 

  80. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447(2–3):247–260

    PubMed  CAS  Google Scholar 

  81. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26(1):40–47

    PubMed  CAS  Google Scholar 

  82. Ostrom RS, Gregorian C, Drenan RM, Gabot K, Rana BK, Insel PA (2001) Key role for constitutive cyclooxygenase-2 of MDCK cells in basal signaling and response to released ATP. Am J Physiol Cell Physiol 281(2):C524–C531

    PubMed  CAS  Google Scholar 

  83. Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74(5):1951–1960

    PubMed  CAS  Google Scholar 

  84. Ciccarelli R, Di Iorio P, Giuliani P, D’Alimonte I, Ballerini P, Caciagli F, Rathbone MP (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25(1):93–98

    PubMed  CAS  Google Scholar 

  85. Pineau I, Lacroix S (2009) Endogenous signals initiating inflammation in the injured nervous system. Glia 57(4):351–361

    PubMed  Google Scholar 

  86. Inoue K (2007) UDP facilitates microglial phagocytosis through P2Y6 receptors. Cell Adh Migr 1(3):131–132

    PubMed  Google Scholar 

  87. Weisman GA, Garrad RC, Erb LJ, Santos-Berrios C, Gonzalez FA (1999) P2Y receptors in the nervous system: molecular studies of a P2Y2 receptor subtype from NG108-15 neuroblastoma x glioma hybrid cells. Prog Brain Res 120:33–43

    PubMed  CAS  Google Scholar 

  88. Soltoff SP, Avraham H, Avraham S, Cantley LC (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273(5):2653–2660

    PubMed  CAS  Google Scholar 

  89. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279(34):35679–35686

    PubMed  CAS  Google Scholar 

  90. Arthur DB, Akassoglou K, Insel PA (2006) P2Y2 and TrkA receptors interact with Src family kinase for neuronal differentiation. Biochem Biophys Res Commun 347(3):678–682

    PubMed  CAS  Google Scholar 

  91. Norambuena A, Palma F, Poblete MI, Donoso MV, Pardo E, Gonzalez A, Huidobro-Toro JP (2010) UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism. J Biol Chem 285(5):2940–2950

    PubMed  CAS  Google Scholar 

  92. Seye CI, Yu N, Jain R, Kong Q, Minor T, Newton J, Erb L, Gonzalez FA, Weisman GA (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 278(27):24960–24965

    PubMed  CAS  Google Scholar 

  93. Baker OJ, Camden JM, Rome DE, Seye CI, Weisman GA (2008) P2Y2 nucleotide receptor activation up-regulates vascular cell adhesion molecule-1 expression and enhances lymphocyte adherence to a human submandibular gland cell line. Mol Immunol 45(1):65–75

    PubMed  CAS  Google Scholar 

  94. Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA (2010) P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 285(10):7545–7555

    PubMed  CAS  Google Scholar 

  95. Liao Z, Seye CI, Weisman GA, Erb L (2007) The P2Y2 nucleotide receptor requires interaction with αv integrins to access and activate G12. J Cell Sci 120(Pt 9):1654–1662

    PubMed  CAS  Google Scholar 

  96. Rice WR, Burton FM, Fiedeldey DT (1995) Cloning and expression of the alveolar type II cell P2u-purinergic receptor. Am J Respir Cell Mol Biol 12(1):27–32

    PubMed  CAS  Google Scholar 

  97. Gresham HD, Adams SP, Brown EJ (1992) Ligand binding specificity of the leukocyte response integrin expressed by human neutrophils. J Biol Chem 267(20):13895–13902

    PubMed  CAS  Google Scholar 

  98. Hautanen A, Gailit J, Mann DM, Ruoslahti E (1989) Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem 264(3):1437–1442

    PubMed  CAS  Google Scholar 

  99. Jang DH, Han JH, Lee SH, Lee YS, Park H, Kim H, Kaang BK (2005) Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses. Proc Natl Acad Sci U S A 102(44):16072–16077

    PubMed  CAS  Google Scholar 

  100. Yu N, Erb L, Shivaji R, Weisman GA, Seye CI (2008) Binding of the P2Y2 nucleotide receptor to filamin A regulates migration of vascular smooth muscle cells. Circ Res 102(5):581–588

    PubMed  CAS  Google Scholar 

  101. Seye CI, Kong Q, Erb L, Garrad RC, Krugh B, Wang M, Turner JT, Sturek M, Gonzalez FA, Weisman GA (2002) Functional P2Y2 nucleotide receptors mediate uridine 5′-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106(21):2720–2726

    PubMed  CAS  Google Scholar 

  102. Kukulski F, Ben Yebdri F, Bahrami F, Fausther M, Tremblay A, Sevigny J (2010) Endothelial P2Y2 receptor regulates LPS-induced neutrophil transendothelial migration in vitro. Mol Immunol 47(5):991–999

    PubMed  CAS  Google Scholar 

  103. Baker OJ, Camden JM, Redman RS, Jones JE, Seye CI, Erb L, Weisman GA (2008) Proinflammatory cytokines tumor necrosis factor-α and interferon-γ alter tight junction structure and function in the rat parotid gland Par-C10 cell line. Am J Physiol Cell Physiol 295(5):C1191–C1201

    PubMed  CAS  Google Scholar 

  104. Degagne E, Grbic DM, Dupuis AA, Lavoie EG, Langlois C, Jain N, Weisman GA, Sevigny J, Gendron FP (2009) P2Y2 receptor transcription is increased by NF-κB and stimulates cyclooxygenase-2 expression and PGE2 released by intestinal epithelial cells. J Immunol 183(7):4521–4529

    PubMed  CAS  Google Scholar 

  105. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22(8):3061–3069

    PubMed  Google Scholar 

  106. Fields RD (2011) Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 22(2):214–219

    PubMed  CAS  Google Scholar 

  107. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26(5):1378–1385

    PubMed  CAS  Google Scholar 

  108. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46(5):731–744

    PubMed  CAS  Google Scholar 

  109. El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol Sci 29(12):626–632

    PubMed  CAS  Google Scholar 

  110. Garrad RC, Otero MA, Erb L, Theiss PM, Clarke LL, Gonzalez FA, Turner JT, Weisman GA (1998) Structural basis of agonist-induced desensitization and sequestration of the P2Y2 nucleotide receptor. Consequences of truncation of the C terminus. J Biol Chem 273(45):29437–29444

    PubMed  CAS  Google Scholar 

  111. Sromek SM, Harden TK (1998) Agonist-induced internalization of the P2Y2 receptor. Mol Pharmacol 54(3):485–494

    PubMed  CAS  Google Scholar 

  112. Toescu EC, Moller T, Kettenmann H, Verkhratsky A (1998) Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 86(3):925–935

    PubMed  CAS  Google Scholar 

  113. Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62(2):305–330

    PubMed  CAS  Google Scholar 

  114. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24

    PubMed  CAS  Google Scholar 

  115. Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD (2002) Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A 99(11):7478–7483

    PubMed  CAS  Google Scholar 

  116. Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282(28):20634–20646

    PubMed  CAS  Google Scholar 

  117. Scott MG, Pierotti V, Storez H, Lindberg E, Thuret A, Muntaner O, Labbe-Jullie C, Pitcher JA, Marullo S (2006) Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Mol Cell Biol 26(9):3432–3445

    PubMed  CAS  Google Scholar 

  118. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA (2007) beta-Arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117(9):2445–2458

    PubMed  CAS  Google Scholar 

  119. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764):884–888

    PubMed  CAS  Google Scholar 

  120. Sudo S, Tanaka J, Toku K, Desaki J, Matsuda S, Arai T, Sakanaka M, Maeda N (1998) Neurons induce the activation of microglial cells in vitro. Exp Neurol 154(2):499–510

    PubMed  CAS  Google Scholar 

  121. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    PubMed  CAS  Google Scholar 

  122. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71:107–113

    PubMed  Google Scholar 

  123. Sugama S, Takenouchi T, Cho BP, Joh TH, Hashimoto M, Kitani H (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8(4):277–284

    PubMed  CAS  Google Scholar 

  124. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99

    PubMed  CAS  Google Scholar 

  125. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254–9262

    PubMed  CAS  Google Scholar 

  126. Franke H, Krugel U, Grosche J, Heine C, Hartig W, Allgaier C, Illes P (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127(2):431–441

    PubMed  CAS  Google Scholar 

  127. Streit WJ (2001) Microglia and macrophages in the developing CNS. Neurotoxicology 22(5):619–624

    PubMed  CAS  Google Scholar 

  128. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    PubMed  CAS  Google Scholar 

  129. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    PubMed  CAS  Google Scholar 

  130. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40(2):133–139

    PubMed  Google Scholar 

  131. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29(3):381–393

    PubMed  CAS  Google Scholar 

  132. Turrin NP, Rivest S (2006) Tumor necrosis factor alpha but not interleukin 1 beta mediates neuroprotection in response to acute nitric oxide excitotoxicity. J Neurosci 26(1):143–151

    PubMed  CAS  Google Scholar 

  133. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    PubMed  CAS  Google Scholar 

  134. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4):432–438

    PubMed  CAS  Google Scholar 

  135. Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184(1–2):92–99

    PubMed  CAS  Google Scholar 

  136. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392

    PubMed  CAS  Google Scholar 

  137. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29(9):506–510

    PubMed  CAS  Google Scholar 

  138. Gate D, Rezai-Zadeh K, Jodry D, Rentsendorj A, Town T (2010) Macrophages in Alzheimer’s disease: the blood-borne identity. J Neural Transm 117(8):961–970

    PubMed  CAS  Google Scholar 

  139. Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 106(4):1261–1266

    PubMed  CAS  Google Scholar 

  140. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7(12):1356–1361

    PubMed  CAS  Google Scholar 

  141. Dickson DW (1999) Microglia in Alzheimer’s disease and transgenic models. How close the fit? Am J Pathol 154(6):1627–1631

    PubMed  CAS  Google Scholar 

  142. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247

    PubMed  CAS  Google Scholar 

  143. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    PubMed  CAS  Google Scholar 

  144. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095

    PubMed  CAS  Google Scholar 

  145. Kim HJ, Ajit D, Peterson TS, Wang Y, Camden JM, Wood GW, Sun GY, Erb L, Petris M, Weisman GA (2012) Nucleotides released from Aβ1–42-treated microglial cells increase cell migration and Aβ1–42 uptake through P2Y2 receptor activation. J Neurochem. doi:10.1111/j.1471-4159.2012.07700.x

  146. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519

    PubMed  CAS  Google Scholar 

  147. Maeda M, Tsuda M, Tozaki-Saitoh H, Inoue K, Kiyama H (2010) Nerve injury-activated microglia engulf myelinated axons in a P2Y12 signaling-dependent manner in the dorsal horn. Glia 58(15):1838–1846

    PubMed  Google Scholar 

  148. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    PubMed  CAS  Google Scholar 

  149. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55(6):604–616

    PubMed  Google Scholar 

  150. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schon P, Schwab A, Hanley PJ (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3(132):ra55

    PubMed  Google Scholar 

  151. Loesch A, Glass R (2006) Electron microscopy and in situ hybridization: expression of P2Y2 receptor mRNA in the cerebellum. Methods Mol Biol 326:151–162

    PubMed  CAS  Google Scholar 

  152. Cheung KK, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 228(2):254–266

    PubMed  CAS  Google Scholar 

  153. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33(10):1539–1556

    PubMed  CAS  Google Scholar 

  154. Takenouchi T, Sugama S, Iwamaru Y, Hashimoto M, Kitani H (2009) Modulation of the ATP-induced release and processing of IL-1beta in microglial cells. Crit Rev Immunol 29(4):335–345

    PubMed  CAS  Google Scholar 

  155. Choi HB, Ryu JK, Kim SU, McLarnon JG (2007) Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 27(18):4957–4968

    PubMed  CAS  Google Scholar 

  156. Mingam R, De Smedt V, Amedee T, Bluthe RM, Kelley KW, Dantzer R, Laye S (2008) In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1 beta in the murine brain. Brain Behav Immun 22(2):234–244

    PubMed  CAS  Google Scholar 

  157. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res 21(1):146–158

    PubMed  CAS  Google Scholar 

  158. Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskeleton 66(8):635–649

    PubMed  CAS  Google Scholar 

  159. Pooler AM, Guez DH, Benedictus R, Wurtman RJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated PC12. Neuroscience 134(1):207–214

    PubMed  CAS  Google Scholar 

  160. Grimm I, Messemer N, Stanke M, Gachet C, Zimmermann H (2009) Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. J Cell Sci 122(Pt 14):2524–2533

    PubMed  CAS  Google Scholar 

  161. Rodriguez-Zayas AE, Torrado AI, Miranda JD (2010) P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 28(6):413–421

    PubMed  CAS  Google Scholar 

  162. Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4):343–346

    PubMed  CAS  Google Scholar 

  163. Chen X, Molliver DC, Gebhart GF (2010) The P2Y2 receptor sensitizes mouse bladder sensory neurons and facilitates purinergic currents. J Neurosci 30(6):2365–2372

    PubMed  CAS  Google Scholar 

  164. Bush CF, Jones SV, Lyle AN, Minneman KP, Ressler KJ, Hall RA (2007) Specificity of olfactory receptor interactions with other G protein-coupled receptors. J Biol Chem 282(26):19042–19051

    PubMed  CAS  Google Scholar 

  165. Lakshmi S, Joshi PG (2005) Co-activation of P2Y2 receptor and TRPV channel by ATP: implications for ATP induced pain. Cell Mol Neurobiol 25(5):819–832

    PubMed  Google Scholar 

  166. Nour M, Quiambao AB, Peterson WM, Al-Ubaidi MR, Naash MI (2003) P2Y2 receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Invest Ophthalmol Vis Sci 44(10):4505–4514

    PubMed  Google Scholar 

  167. Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63(1–2):39–46

    PubMed  CAS  Google Scholar 

  168. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542

    PubMed  CAS  Google Scholar 

  169. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    PubMed  CAS  Google Scholar 

  170. Barker AJ, Ullian EM (2010) Astrocytes and synaptic plasticity. Neuroscientist 16(1):40–50

    PubMed  Google Scholar 

  171. Vilhardt F (2005) Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 37(1):17–21

    PubMed  CAS  Google Scholar 

  172. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘on’ and ‘off’ signals control microglia. Trends Neurosci 30(11):596–602

    PubMed  CAS  Google Scholar 

  173. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    PubMed  CAS  Google Scholar 

  174. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    PubMed  CAS  Google Scholar 

  175. Graeber MB, Bise K, Mehraein P (1993) Synaptic stripping in the human facial nucleus. Acta Neuropathol 86(2):179–181

    PubMed  CAS  Google Scholar 

  176. Yamada J, Hayashi Y, Jinno S, Wu Z, Inoue K, Kohsaka S, Nakanishi H (2008) Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy. Glia 56(13):1448–1462

    PubMed  Google Scholar 

  177. Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16(2):255–257

    PubMed  CAS  Google Scholar 

  178. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166(10):6383–6391

    PubMed  CAS  Google Scholar 

  179. de Haas AH, van Weering HR, de Jong EK, Boddeke HW, Biber KP (2007) Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 36(2):137–151

    PubMed  Google Scholar 

  180. Bessis A, Bechade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55(3):233–238

    PubMed  Google Scholar 

  181. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535

    PubMed  CAS  Google Scholar 

  182. Nakajima K, Kikuchi Y, Ikoma E, Honda S, Ishikawa M, Liu Y, Kohsaka S (1998) Neurotrophins regulate the function of cultured microglia. Glia 24(3):272–289

    PubMed  CAS  Google Scholar 

  183. Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20(1):251–258

    PubMed  CAS  Google Scholar 

  184. Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109(1–2):210–226

    PubMed  CAS  Google Scholar 

  185. Farber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48(2):133–143

    PubMed  Google Scholar 

  186. Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69(5):341–374

    PubMed  CAS  Google Scholar 

  187. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    PubMed  CAS  Google Scholar 

  188. Hamilton N, Vayro S, Wigley R, Butt AM (2010) Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58(1):66–79

    PubMed  Google Scholar 

  189. Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56(7):734–749

    PubMed  Google Scholar 

  190. Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17(11):2267–2276

    PubMed  Google Scholar 

  191. McLarnon JG (2005) Purinergic mediated changes in Ca2+ mobilization and functional responses in microglia: effects of low levels of ATP. J Neurosci Res 81(3):349–356

    PubMed  CAS  Google Scholar 

  192. Norenberg W, Langosch JM, Gebicke-Haerter PJ, Illes P (1994) Characterization and possible function of adenosine 5′-triphosphate receptors in activated rat microglia. Br J Pharmacol 111(3):942–950

    PubMed  CAS  Google Scholar 

  193. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    PubMed  CAS  Google Scholar 

  194. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3(3):216–227

    PubMed  CAS  Google Scholar 

  195. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439

    PubMed  CAS  Google Scholar 

  196. Pratico D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16(9):1138–1140

    PubMed  CAS  Google Scholar 

  197. Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signalling in Alzheimer’s disease. Brain Res 1000(1–2):32–39

    PubMed  CAS  Google Scholar 

  198. Abramov AY, Canevari L, Duchen MR (2004) Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 1742(1–3):81–87

    PubMed  CAS  Google Scholar 

  199. Jensen MD, Sheng W, Simonyi A, Johnson GS, Sun AY, Sun GY (2009) Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochem Int 55(6):362–368

    PubMed  CAS  Google Scholar 

  200. Griffin WS (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83(2):470S–474S

    PubMed  CAS  Google Scholar 

  201. Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9(6):481–493

    PubMed  CAS  Google Scholar 

  202. Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23(35):11136–11141

    PubMed  CAS  Google Scholar 

  203. Alarcon R, Fuenzalida C, Santibanez M, von Bernhardi R (2005) Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 280(34):30406–30415

    PubMed  CAS  Google Scholar 

  204. Mouser PE, Head E, Ha KH, Rohn TT (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol 168(3):936–946

    PubMed  CAS  Google Scholar 

  205. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948

    PubMed  CAS  Google Scholar 

  206. Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, Przyborski S, Ballard C (2006) Altered neurogenesis in Alzheimer’s disease. J Psychosom Res 61(3):311–316

    PubMed  Google Scholar 

  207. Du Y, Fischer TZ, Lee LN, Lercher LD, Dreyfus CF (2003) Regionally specific effects of BDNF on oligodendrocytes. Dev Neurosci 25(2–4):116–126

    PubMed  CAS  Google Scholar 

  208. Streit WJ (2005) Microglia and neuroprotection: implications for Alzheimer’s disease. Brain Res Brain Res Rev 48(2):234–239

    PubMed  CAS  Google Scholar 

  209. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21(18):7153–7160

    PubMed  CAS  Google Scholar 

  210. Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F (2011) P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed) 3:1443–1456

    Google Scholar 

  211. Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1–2):69–91

    PubMed  CAS  Google Scholar 

  212. Campbell SJ, Deacon RM, Jiang Y, Ferrari C, Pitossi FJ, Anthony DC (2007) Overexpression of IL-1beta by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour. Neurobiol Dis 27(2):151–163

    PubMed  CAS  Google Scholar 

  213. Kuzumaki N, Ikegami D, Imai S, Narita M, Tamura R, Yajima M, Suzuki A, Miyashita K, Niikura K, Takeshima H, Ando T, Ushijima T, Suzuki T (2010) Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse 64(9):721–728

    PubMed  CAS  Google Scholar 

  214. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78(6):1339–1349

    PubMed  CAS  Google Scholar 

  215. D’Alimonte I, Ciccarelli R, Di Iorio P, Nargi E, Buccella S, Giuliani P, Rathbone MP, Jiang S, Caciagli F, Ballerini P (2007) Activation of P2X7 receptors stimulates the expression of P2Y2 receptor mRNA in astrocytes cultured from rat brain. Int J Immunopathol Pharmacol 20(2):301–316

    PubMed  Google Scholar 

  216. Walker DG, Kim SU, McGeer PL (1995) Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J Neurosci Res 40(4):478–493

    PubMed  CAS  Google Scholar 

  217. Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2):154–163

    PubMed  Google Scholar 

  218. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29(13):4252–4262

    PubMed  CAS  Google Scholar 

  219. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618

    PubMed  CAS  Google Scholar 

  220. Chung H, Brazil MI, Soe TT, Maxfield FR (1999) Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer’s amyloid beta-peptide by microglial cells. J Biol Chem 274(45):32301–32308

    PubMed  CAS  Google Scholar 

  221. Kong Y, Ruan L, Qian L, Liu X, Le Y (2010) Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 30(35):11848–11857

    PubMed  CAS  Google Scholar 

  222. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    PubMed  CAS  Google Scholar 

  223. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    PubMed  CAS  Google Scholar 

  224. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39(5–6):333–340

    PubMed  CAS  Google Scholar 

  225. Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R (2011) Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology 216(1–2):1–11

    PubMed  CAS  Google Scholar 

  226. Ferrari D, Los M, Bauer MK, Vandenabeele P, Wesselborg S, Schulze-Osthoff K (1999) P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett 447(1):71–75

    PubMed  CAS  Google Scholar 

  227. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36(9):1295–1301

    PubMed  CAS  Google Scholar 

  228. Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC, LeVine H (2001) The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol Aging 22(1):49–61

    PubMed  CAS  Google Scholar 

  229. Wegiel J, Imaki H, Wang KC, Wronska A, Osuchowski M, Rubenstein R (2003) Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol 105(4):393–402

    PubMed  Google Scholar 

  230. Wegiel J, Imaki H, Wang KC, Rubenstein R (2004) Cells of monocyte/microglial lineage are involved in both microvessel amyloidosis and fibrillar plaque formation in APPsw tg mice. Brain Res 1022(1–2):19–29

    PubMed  CAS  Google Scholar 

  231. Sheng JG, Mrak RE, Griffin WS (1997) Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol 94(1):1–5

    PubMed  CAS  Google Scholar 

  232. Perlmutter LS, Scott SA, Barron E, Chui HC (1992) MHC class II-positive microglia in human brain: association with Alzheimer lesions. J Neurosci Res 33(4):549–558

    PubMed  CAS  Google Scholar 

  233. Malm TM, Koistinaho M, Parepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J (2005) Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis 18(1):134–142

    PubMed  CAS  Google Scholar 

  234. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182

    PubMed  CAS  Google Scholar 

  235. Haga S, Akai K, Ishii T (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. An immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol 77(6):569–575

    PubMed  CAS  Google Scholar 

  236. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152(1):307–317

    PubMed  CAS  Google Scholar 

  237. Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132(1):86–101

    PubMed  CAS  Google Scholar 

  238. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502

    PubMed  CAS  Google Scholar 

  239. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795

    PubMed  CAS  Google Scholar 

  240. Muller T, Robaye B, Vieira RP, Ferrari D, Grimm M, Jakob T, Martin SF, Di Virgilio F, Boeynaems JM, Virchow JC, Idzko M (2010) The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy 65(12):1545–1553

    PubMed  CAS  Google Scholar 

  241. Vanderstocken G, Bondue B, Horckmans M, Di Pietrantonio L, Robaye B, Boeynaems JM, Communi D (2010) P2Y2 receptor regulates VCAM-1 membrane and soluble forms and eosinophil accumulation during lung inflammation. J Immunol 185(6):3702–3707

    PubMed  CAS  Google Scholar 

  242. van Buul JD, Hordijk PL (2004) Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 24(5):824–833

    PubMed  Google Scholar 

  243. Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC (1993) Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol 120(6):1371–1380

    PubMed  CAS  Google Scholar 

  244. Seye CI, Gadeau AP, Daret D, Dupuch F, Alzieu P, Capron L, Desgranges C (1997) Overexpression of P2Y2 purinoceptor in intimal lesions of the rat aorta. Arterioscler Thromb Vasc Biol 17(12):3602–3610

    PubMed  CAS  Google Scholar 

  245. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    PubMed  CAS  Google Scholar 

  246. Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39(4–5):187–199

    PubMed  CAS  Google Scholar 

  247. Saito H, Minamiya Y, Saito S, Ogawa J (2002) Endothelial Rho and Rho kinase regulate neutrophil migration via endothelial myosin light chain phosphorylation. J Leukoc Biol 72(4):829–836

    PubMed  CAS  Google Scholar 

  248. Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114(Pt 7):1343–1355

    PubMed  CAS  Google Scholar 

  249. Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176(1):150–165

    PubMed  CAS  Google Scholar 

  250. Vouret-Craviari V, Boquet P, Pouyssegur J, Van Obberghen-Schilling E (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9(9):2639–2653

    PubMed  CAS  Google Scholar 

  251. Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J, Hruska KA (2001) Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 269(1):73–87

    PubMed  CAS  Google Scholar 

  252. Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E (1996) Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 16(3):488–496

    PubMed  CAS  Google Scholar 

  253. Kevil CG, Payne DK, Mire E, Alexander JS (1998) Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 273(24):15099–15103

    PubMed  CAS  Google Scholar 

  254. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    PubMed  CAS  Google Scholar 

  255. Andriopoulou P, Navarro P, Zanetti A, Lampugnani MG, Dejana E (1999) Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler Thromb Vasc Biol 19(10):2286–2297

    PubMed  CAS  Google Scholar 

  256. Wong RK, Baldwin AL, Heimark RL (1999) Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 276(2 Pt 2):H736–H748

    PubMed  CAS  Google Scholar 

  257. Noll T, Holschermann H, Koprek K, Gunduz D, Haberbosch W, Tillmanns H, Piper HM (1999) ATP reduces macromolecule permeability of endothelial monolayers despite increasing [Ca2+]i. Am J Physiol 276(6 Pt 2):H1892–H1901

    PubMed  CAS  Google Scholar 

  258. Tanaka N, Kawasaki K, Nejime N, Kubota Y, Nakamura K, Kunitomo M, Takahashi K, Hashimoto M, Shinozuka K (2004) P2Y receptor-mediated Ca2+ signaling increases human vascular endothelial cell permeability. J Pharmacol Sci 95(2):174–180

    PubMed  CAS  Google Scholar 

  259. Marrelli SP (2001) Mechanisms of endothelial P2Y1- and P2Y2-mediated vasodilatation involve differential [Ca2+]i responses. Am J Physiol Heart Circ Physiol 281(4):H1759–H1766

    PubMed  CAS  Google Scholar 

  260. Ding L, Ma W, Littmann T, Camp R, Shen J (2011) The P2Y2 nucleotide receptor mediates tissue factor expression in human coronary artery endothelial cells. J Biol Chem 286:27027–27038

    PubMed  CAS  Google Scholar 

  261. Wallez Y, Vilgrain I, Huber P (2006) Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med 16(2):55–59

    PubMed  CAS  Google Scholar 

  262. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778(3):794–809

    PubMed  CAS  Google Scholar 

  263. Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, Huber P (2007) Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26(7):1067–1077

    PubMed  CAS  Google Scholar 

  264. Matsuyoshi N, Toda K, Horiguchi Y, Tanaka T, Nakagawa S, Takeichi M, Imamura S (1997) In vivo evidence of the critical role of cadherin-5 in murine vascular integrity. Proc Assoc Am Physicians 109(4):362–371

    PubMed  CAS  Google Scholar 

  265. Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110(Pt 5):583–588

    PubMed  CAS  Google Scholar 

  266. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 96(17):9815–9820

    PubMed  CAS  Google Scholar 

  267. Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J, Introna M, Gulino D, Lampugnani MG, Dejana E (1995) Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15(8):1229–1239

    PubMed  CAS  Google Scholar 

  268. Vincent PA, Xiao K, Buckley KM, Kowalczyk AP (2004) VE-cadherin: adhesion at arm’s length. Am J Physiol Cell Physiol 286(5):C987–C997

    PubMed  CAS  Google Scholar 

  269. Noren NK, Liu BP, Burridge K, Kreft B (2000) p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150(3):567–580

    PubMed  CAS  Google Scholar 

  270. Grosheva I, Shtutman M, Elbaum M, Bershadsky AD (2001) p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell–cell contact formation and regulation of cell locomotion. J Cell Sci 114(Pt 4):695–707

    PubMed  CAS  Google Scholar 

  271. Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB (2000) Inhibition of RhoA by p120 catenin. Nat Cell Biol 2(9):637–644

    PubMed  CAS  Google Scholar 

  272. Lampugnani MG, Zanetti A, Breviario F, Balconi G, Orsenigo F, Corada M, Spagnuolo R, Betson M, Braga V, Dejana E (2002) VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol Biol Cell 13(4):1175–1189

    PubMed  CAS  Google Scholar 

  273. Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D (2005) Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 24(9):1686–1695

    PubMed  CAS  Google Scholar 

  274. Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, Golding M, Shima DT, Deutsch U, Vestweber D (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21(18):4885–4895

    PubMed  CAS  Google Scholar 

  275. Dejana E, Bazzoni G, Lampugnani MG (1999) The role of endothelial cell-to-cell junctions in vascular morphogenesis. Thromb Haemost 82(2):755–761

    PubMed  CAS  Google Scholar 

  276. Naik MU, Mousa SA, Parkos CA, Naik UP (2003) Signaling through JAM-1 and alphavbeta3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and alphavbeta3 complex. Blood 102(6):2108–2114

    PubMed  CAS  Google Scholar 

  277. Aurrand-Lions M, Johnson-Leger C, Imhof BA (2002) The last molecular fortress in leukocyte trans-endothelial migration. Nat Immunol 3(2):116–118

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AG018357, DE017591, and DE07389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Weisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisman, G.A., Ajit, D., Garrad, R. et al. Neuroprotective roles of the P2Y2 receptor. Purinergic Signalling 8, 559–578 (2012). https://doi.org/10.1007/s11302-012-9307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9307-6

Keywords

Navigation