Skip to main content
Log in

P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

It has recently been shown that adenosine-5′-triphosphate (ATP) is released together with glutamate from sensory axons in the olfactory bulb, where it stimulates calcium signaling in glial cells, while responses in identified neurons to ATP have not been recorded in the olfactory bulb yet. We used photolysis of caged ATP to elicit a rapid rise in ATP and measured whole-cell current responses in mitral cells, the output neurons of the olfactory bulb, in acute mouse brain slices. Wide-field photolysis of caged ATP evoked an increase in synaptic inputs in mitral cells, indicating an ATP-dependent increase in network activity. The increase in synaptic activity was accompanied by calcium transients in the dendritic tuft of the mitral cell, as measured by confocal calcium imaging. The stimulating effect of ATP on the network activity could be mimicked by photo release of caged adenosine 5′-diphosphate, and was inhibited by the P2Y1 receptor antagonist MRS 2179. Local photolysis of caged ATP in the glomerulus innervated by the dendritic tuft of the recorded mitral cell elicited currents similar to those evoked by wide-field illumination. The results indicate that activation of P2Y1 receptors in the glomerulus can stimulate network activity in the olfactory bulb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86

    Article  PubMed  CAS  Google Scholar 

  2. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  3. Abbracchio M, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  4. Illes P, Alexandre Ribeiro J (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17

    Article  PubMed  CAS  Google Scholar 

  5. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128, discussion 128–30, 233–7, 275–81

    Article  PubMed  CAS  Google Scholar 

  6. Burnstock G, Fredholm B, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011

    Article  PubMed  CAS  Google Scholar 

  7. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  PubMed  CAS  Google Scholar 

  8. Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902

    Article  PubMed  CAS  Google Scholar 

  9. Pankratov Y, Lalo U, Verkhratsky A, North R (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    Article  PubMed  CAS  Google Scholar 

  10. Goncalves J, Queiroz G (2008) Presynaptic adenosine and P2Y receptors. Handb Exp Pharmacol 184:339–372

    Article  PubMed  CAS  Google Scholar 

  11. Deitmer JW, Brockhaus J, Casel D (2006) Modulation of synaptic activity in Purkinje neurons by ATP. Cerebellum 5:49–54

    Article  PubMed  CAS  Google Scholar 

  12. Bilbao PS, Katz S, Boland R (2011) Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function. Purinergic Signal. doi:10.1007/s11302-011-9260-9

  13. Lohr C, Thyssen A, Hirnet D (2011) Extrasynaptic neuron-glia communication: the how and why. Commun Integr Biol 4:109–111

    PubMed  Google Scholar 

  14. Rieger A, Deitmer JW, Lohr C (2007) Axon-glia communication evokes calcium signaling in olfactory ensheathing cells of the developing olfactory bulb. Glia 55:352–359

    Article  PubMed  Google Scholar 

  15. Thyssen A, Hirnet D, Wolburg H, Schmalzing G, Deitmer J, Lohr C (2010) Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling. Proc Natl Acad Sci U S A 107:15258–15263

    Article  PubMed  CAS  Google Scholar 

  16. Doengi M, Deitmer J, Lohr C (2008) New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 22:2368–2378

    Article  PubMed  CAS  Google Scholar 

  17. Guo W, Xu X, Gao X, Burnstock G, He C, Xiang Z (2008) Expression of P2X5 receptors in the mouse CNS. Neuroscience 156:673–692

    Article  PubMed  CAS  Google Scholar 

  18. Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32

    Article  PubMed  CAS  Google Scholar 

  19. Le KT, Villeneuve P, Ramjaun AR, McPherson PS, Beaudet A, Seguela P (1998) Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83:177–190

    Article  PubMed  CAS  Google Scholar 

  20. Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A 93:8063–8067

    Article  PubMed  CAS  Google Scholar 

  21. De Saint JD, Hirnet D, Westbrook G, Charpak S (2009) External tufted cells drive the output of olfactory bulb glomeruli. J Neurosci 29:2043–2052

    Article  Google Scholar 

  22. Doengi M, Coulon P, Pape HC, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci U S A 106:17570–17575

    Article  PubMed  CAS  Google Scholar 

  23. Wurm A, Lipp S, Pannicke T, Linnertz R, Krügel U, Schulz A, Färber K, Zahn D, Grosse J, Wiedemann P, Chen J, Schöneberg T, Illes P, Reichenbach A, Bringmann A (2010) Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells. J Neurochem 112:1261–1272

    Article  PubMed  CAS  Google Scholar 

  24. Hamilton N, Vayro S, Wigley R, Butt AM (2010) Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58:66–79

    Article  PubMed  Google Scholar 

  25. Najac M, De Saint JD, Reguero L, Grandes P, Charpak S (2011) Monosynaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons. J Neurosci 31:8722–8729

    Article  PubMed  CAS  Google Scholar 

  26. Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    Article  PubMed  CAS  Google Scholar 

  27. Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PP, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248

    PubMed  CAS  Google Scholar 

  28. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  29. Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci U S A 93:3684–3688

    Article  PubMed  CAS  Google Scholar 

  30. Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15:55–62

    PubMed  CAS  Google Scholar 

  31. Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133

    Article  PubMed  CAS  Google Scholar 

  32. Hassenklöver T, Schulz P, Peters A, Schwartz P, Schild D, Manzini I (2010) Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles. Purinergic Signal 6:429–445

    Article  PubMed  Google Scholar 

  33. Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol 118:167–173

    PubMed  CAS  Google Scholar 

  34. Simon J, Webb TE, Barnard EA (1997) Distribution of dATP alpha S binding sites in the adult rat neuraxis. Neuropharmacology 36:1243–1251

    Article  PubMed  CAS  Google Scholar 

  35. Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A 103:10058–10063

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Deutsche Forschungsgemeinschaft (LO 779/6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Hirnet.

Additional information

Timo Fischer and Natalie Rotermund contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

Analysis of the current response. The integral, i.e., the area enclosed by the current trace and the baseline (gray area) was calculated (JPEG 615 kb)

Supplementary figure 2

Olfactory bulb brain slice. a Mitral cell somata build the narrow band of the mitral cell layer (ML). b At high magnification, individual somata of mitral cells can be distinguished (asterisks; JPEG 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, T., Rotermund, N., Lohr, C. et al. P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb. Purinergic Signalling 8, 191–198 (2012). https://doi.org/10.1007/s11302-011-9286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9286-z

Keywords

Navigation