Skip to main content
Log in

Historical perspective on ADP-induced platelet activation

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hellem AJ (1960) The adhesiveness of human blood platelets in vitro. Scand J Clin Lab Invest 12(Suppl):1–117

    PubMed  Google Scholar 

  2. Øllgaard E (1961) Macroscopic studies of platelet aggregation. Nature of an aggregating factor in red blood cells and platelets. Thromb Diath Haemorrh 6:86–97

    PubMed  Google Scholar 

  3. Gaarder A, Jonsen J, Laland S, Hellem A, Owren PA (1961) Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 192:531–532

    PubMed  CAS  Google Scholar 

  4. Jerushalmy Z, Skoza L, Zucker MB, Grant R (1966) Inhibition by guanidine compounds of platelet aggregation induced by adenosine diphosphate. Biochem Pharmacol 15:1791–1803

    CAS  Google Scholar 

  5. Born GVR (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    PubMed  CAS  Google Scholar 

  6. Mustard JF, Packham MA (1970) Factors influencing platelet function: adhesion, release, and aggregation. Pharmacol Rev 22:97–187

    PubMed  CAS  Google Scholar 

  7. Marcus AJ, Zucker MB (1965) The physiology of blood platelets: recent biochemical, morphologic and clinical research. Grune and Stratton, New York, pp 1–162

    Google Scholar 

  8. Cattaneo M (2007) The platelet P2 receptors. In: Michelson AD (ed) Platelets, 2nd edn. Elsevier, New York, pp 201–210

    Google Scholar 

  9. Grette K (1962) Studies on the mechanism of thrombin-catalyzed hemostatic reactions in blood platelets. Acta Physiol Scand Suppl 195:1–93

    PubMed  CAS  Google Scholar 

  10. Zucker MB, Borrelli J (1962) Platelet clumping produced by connective tissue suspensions and by collagen. Proc Soc Exp Biol Med 109:779–787

    Google Scholar 

  11. Hovig T (1963) Release of a platelet-aggregating substance (adenosine diphosphate) from rabbit blood platelets induced by saline “extract” of tendons. Thromb Diath Haemorrh 9:264–278

    CAS  Google Scholar 

  12. Hugues J, Lapière CM (1964) Nouvelles recherches sur l’accolement des plaquettes aux fibres de collagén. Thromb Diath Haemorrh 11:327–354

    PubMed  CAS  Google Scholar 

  13. Mills DCB, Robb IA, Roberts GCK (1968) The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 195:715–729

    PubMed  CAS  Google Scholar 

  14. Holmsen H, Weiss HJ (1970) Hereditary defect in the platelet release reaction caused by a deficiency in the storage pool of platelet adenine nucleotides. Br J Haematol 19:643–649

    PubMed  CAS  Google Scholar 

  15. D’Souza L, Glueck HI (1977) Measurement of nucleotide pools in platelets using high pressure liquid chromatography. Thromb Haemost 38:990–1001

    PubMed  Google Scholar 

  16. Gachet C, Cazenave JP (1991) ADP induced blood platelet activation: a review. Nouv Rev Fr Hematol 33:347–358

    PubMed  CAS  Google Scholar 

  17. Plow EF, Ginsberg MH, Marguerie GA (1986) Expression and function of adhesive proteins on the platelet surface. In: Phillips DR, Shuman MA (eds) Biochemistry of platelets. Academic Press, Orlando, pp 225–256

    Google Scholar 

  18. Born GVR (1970) Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J Physiol 209:487–511

    PubMed  CAS  Google Scholar 

  19. Mills DCB (1973) Changes in adenylate energy charge in human blood platelets induced by adenosine diphosphate. Nature, New Biol 243:220–222

    CAS  Google Scholar 

  20. Deranleau DA, Dubler D, Rothen C, Lüscher EF (1982) Transient kinetics of the rapid shape change of unstirred human blood platelets stimulated with ADP. Proc Natl Acad Sci USA 79:7297–7301

    PubMed  CAS  Google Scholar 

  21. Zucker MB, Jerushalmy Z (1967) Studies on platelet shape and aggregation: effect of inhibitors on these and other platelet characteristics. In: Johnson SH, Seegers WH (eds) Physiology of hemostasis and thrombosis. Charles C. Thomas, Springfield, pp 249–265

    Google Scholar 

  22. Skjørten F (1968) Studies on the ultrastructure of pseudopod formation in human blood platelets: 1. Effect of temperature, period of incubation, anticoagulants and mechanical forces. Scand J Haematol 5:401–414

    PubMed  Google Scholar 

  23. McLean JR, Veloso H (1967) Change of shape without aggregation caused by ADP in rabbit platelets at low pH. Life Sci 6:1983–1986

    PubMed  CAS  Google Scholar 

  24. White JG (1968) Fine structural alterations induced in platelets by adenosine diphosphate. Blood 31:604–622

    PubMed  CAS  Google Scholar 

  25. Paul BZS, Daniel JL, Kunapuli SP (1999) Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways. J Biol Chem 274:28293–28300

    PubMed  CAS  Google Scholar 

  26. Wilde JI, Retzer M, Seiss W, Watson SP (2000) ADP-induced platelet shape change: an investigation of the signalling pathways involved and their dependence on the method of platelet preparation. Platelets 11:286–295

    PubMed  CAS  Google Scholar 

  27. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    PubMed  CAS  Google Scholar 

  28. O’Brien JR (1962) Platelet aggregation: Part II. Some results from a new method of study. J Clin Pathol 15:452–455

    Google Scholar 

  29. Ardlie NG, Perry DW, Packham MA, Mustard JF (1971) Influence of apyrase on stability of suspensions of washed rabbit platelets. Proc Soc Exp Biol Med 136:1021–1023

    PubMed  CAS  Google Scholar 

  30. Kinlough-Rathbone RL, Perry DW, Rand ML, Packham MA (1999) Most apyrase preparations are impure and contain inhibitors of cathepsin G: suggestions for use of apyrase in preparation and stabilization of platelet suspensions. Thromb Haemost 81:849–850

    PubMed  CAS  Google Scholar 

  31. Baurand A, Eckly A, Bari N, Léon C, Hechler B, Cazenave J-P, Gachet C (2000) Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors. Thromb Haemost 84:484–491

    PubMed  CAS  Google Scholar 

  32. Baurand A, Eckly A, Hechler B, Kauffenstein G, Galzi J-L, Cazenave J-P, Léon C, Gachet C (2010) Differential regulation and relocalization of the platelet P2Y receptors after activation: a way to avoid loss of hemostatic properties? Mol Pharmacol 67:721–733

    Google Scholar 

  33. Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560

    PubMed  CAS  Google Scholar 

  34. Mundell SJ, Barton JF, Mayo-Martin MB, Hardy AR, Poole AW (2008) Rapid resensitization of purinergic receptor function in human platelets. J Thromb Haemost 6:1393–1404

    PubMed  CAS  Google Scholar 

  35. Herrmann RG, Lacefield WB, Crowe VG (1970) Effect of ionic calcium and magnesium on human platelet aggregation. Proc Soc Exp Biol Med 135:100–103

    PubMed  CAS  Google Scholar 

  36. Lages B, Weiss HJ (1981) Dependence of human platelet functional responses on divalent cations: aggregation and secretion in heparin- and hirudin-anticoagulated platelet-rich plasma and the effects of chelating agents. Thromb Haemostas 45:173–179

    CAS  Google Scholar 

  37. Born GVR, Cross MJ (1963) The aggregation of blood platelets. J Physiol 168:178–195

    PubMed  CAS  Google Scholar 

  38. Packham MA, Rand ML, Kinlough-Rathbone RL (2002) Aggregation. In: Gresele P, Page CP, Fuster V, Vermylen J (eds) Platelets in thrombotic and non-thrombotic disorders. Cambridge University Press, Cambridge, pp 338–356

    Google Scholar 

  39. Smith JB (1987) Prostaglandins in platelet aggregation and haemostasis. In: Bloom AL, Thomas DP (eds) Haemostasis and thrombosis, 2nd edn. Churchill Livingstone, Edinburgh, pp 78–89

    Google Scholar 

  40. Mustard JF, Perry DW, Kinlough-Rathbone RL, Packham MA (1975) Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol 228:1757–1765

    PubMed  CAS  Google Scholar 

  41. Packham MA, Bryant NL, Guccione MA, Kinlough-Rathbone RL, Mustard JF (1989) Effect of the concentration of Ca2+ in the suspending medium on the responses of human and rabbit platelets to aggregating agents. Thromb Haemost 62:968–976

    PubMed  CAS  Google Scholar 

  42. Cattaneo M, Gachet C, Cazenave J-P, Packham MA (2002) Adenosine diphosphate (ADP) does not induce thromboxane A2 generation in human platelets. Blood 99:3868–3869

    PubMed  CAS  Google Scholar 

  43. Kinlough-Rathbone RL, Packham MA, Mustard JF (1983) Platelet aggregation. In: Harker LA, Zimmerman TS (eds) Methods in hematology. Measurements of platelet function. Churchill Livingstone, New York, pp 64–91

    Google Scholar 

  44. Macmillan DC, Sim AK (1970) A comparative study of platelet aggregation in man and laboratory animals. Thromb Diath Haemorrh 24:385–389

    PubMed  CAS  Google Scholar 

  45. Meyers KM, Katz JB, Clemmons RM, Smith JB, Holmsen H (1980) An evaluation of the arachidonate pathway of platelets from companion and food-producing animals, mink, and man. Thromb Res 20:13–24

    PubMed  CAS  Google Scholar 

  46. Nunn B (1981) Some characteristics of mouse platelet aggregation and a comparison of the activity of a range of compounds in mouse and human platelet-rich plasma in vitro. Thromb Haemost 45:1–5

    PubMed  CAS  Google Scholar 

  47. Roth GJ, Majerus PW (1975) The mechanism of the effect of aspirin on human platelets: I. Acetylation of a particulate fraction protein. J Clin Invest 56:624–632

    PubMed  CAS  Google Scholar 

  48. Zucker MB, Peterson J (1968) Inhibition of adenosine diphosphate-induced secondary aggregation and other platelet functions by acetylsalicylic acid ingestion. Proc Soc Exp Biol Med 127:148–158

    Google Scholar 

  49. Weiss HJ, Aledort LM, Kochwa S (1968) The effect of salicylates on the hemostatic properties of platelets in man. J Clin Invest 47:2169–2180

    PubMed  CAS  Google Scholar 

  50. Evans G, Packham MA, Nishizawa EE, Mustard JF, Murphy EA (1968) The effect of acetylsalicylic acid on platelet function. J Exp Med 128:877–894

    PubMed  CAS  Google Scholar 

  51. Cronberg S, Wallmark E, Söderberg I (1984) Effect on platelet aggregation of oral administration of 10 non-steroidal analgesics to humans. Scand J Haematol 33:155–159

    PubMed  CAS  Google Scholar 

  52. Born GVR (1965) Uptake of adenosine and of adenosine diphosphate by human blood platelets. Nature 206:1121–1122

    PubMed  CAS  Google Scholar 

  53. Salzman EW, Ashford TP, Chambers DA, Neri LL (1969) Platelet incorporation of labelled adenosine and adenosine diphosphate. Thromb Diath Haemorrh 22:304–315

    PubMed  CAS  Google Scholar 

  54. Holmsen H, Day HJ (1971) Adenine nucleotides and platelet function. Ser Haemat 4:28–58

    CAS  Google Scholar 

  55. Rozenberg MC, Holmsen H (1968) Adenine nucleotide metabolism of blood platelets: II. Uptake of adenosine and inhibition of ADP-induced platelet aggregation. Biochim Biophys Acta 155:342–352

    PubMed  CAS  Google Scholar 

  56. Born GVR, Honour AJ, Mitchell JR (1964) Inhibition by adenosine and by 2-chloroadenosine of the formation and embolization of platelet thrombi. Nature 202:761–765

    PubMed  CAS  Google Scholar 

  57. Skoza L, Zucker MB, Jerushalmy Z, Grant R (1967) Kinetic studies of platelet aggregation induced by adenosine diphosphate and its inhibition by chelating agents, guanidino compounds, and adenosine. Thromb Diath Haemorrh 18:713–725

    PubMed  CAS  Google Scholar 

  58. Haslam RJ (1967) Mechanisms of blood platelet aggregation. In: Johnson SH, Seegers WH (eds) Physiology of hemostasis and thrombosis. Charles C. Thomas, Springfield, pp 88–112

    Google Scholar 

  59. Mills DCB, Smith JB (1971) The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3′:5′-cyclic monophosphate in platelets. Biochem J 121:185–196

    PubMed  CAS  Google Scholar 

  60. Haslam RJ (1973) Interactions of the pharmacological receptors of blood platelets with adenylate cyclase. Ser Haematol 6:333–350

    PubMed  CAS  Google Scholar 

  61. Macfarlane DE, Mills DCB (1975) The effect of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood 46:309–320

    PubMed  CAS  Google Scholar 

  62. Ardlie NG, Glew G, Schwartz CJ (1966) Influence of catecholamines on nucleotide-induced platelet aggregation. Nature 212:414–417

    Google Scholar 

  63. Kinlough-Rathbone RL, Mustard JF (1986) Synergism of agonists. In: Holmsen H (ed) Platelet responses and metabolism, Vol 1. CRC Press, Boca Raton, pp 193–207

    Google Scholar 

  64. Ware JA, Smith M, Salzman EW (1987) Synergism of platelet-aggregating agents. Role of elevation of cytoplasmic calcium. J Clin Invest 80:267–271

    PubMed  CAS  Google Scholar 

  65. Kinlough-Rathbone RL, Perry DW, Guccione MA, Rand ML, Packham MA (1993) Degranulation of human platelets by the thrombin receptor peptide SFLLRN: comparison with degranulation by thrombin. Thromb Haemost 70:1019–1023

    PubMed  CAS  Google Scholar 

  66. Cattaneo M, Canciani MT, Lecchi A, Kinlough-Rathbone RL, Packham MA, Mannucci PM, Mustard JF (1990) Released adenosine diphosphate stabilizes thrombin-induced human platelet aggregates. Blood 75:1081–1086

    PubMed  CAS  Google Scholar 

  67. Trumel C, Payrastre B, Plantavid M, Hechler B, Viala C, Presek P, Martinson EA, Cazenave J-P, Chap H, Gachet C (1999) A key role of adenosine diphosphate in the irreversible aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 94:4156–4165

    PubMed  CAS  Google Scholar 

  68. Holmsen H, Weiss HJ (1972) Further evidence for a deficient storage pool of adenine nucleotides in platelets from some patients with thrombocytopathia — “storage pool disease”. Blood 39:197–209

    PubMed  CAS  Google Scholar 

  69. Hardwick RA, Hellums JD, Peterson DM, Moake JL, Olson JD (1981) The effect of PGI2 and theophylline on the response of platelets subjected to shear stress. Blood 56:678–681

    Google Scholar 

  70. Moake JL, Turner NA, Stathopoulos NA, Nolasco L, Hellums JD (1988) Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 71:1366–1374

    PubMed  CAS  Google Scholar 

  71. Chow TW, Hellums JD, Moake JL, Kroll MH (1992) Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood 80:113–120

    PubMed  CAS  Google Scholar 

  72. Ruggeri ZM, Dent JA, Saldívar E (1999) Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 94:172–178

    PubMed  CAS  Google Scholar 

  73. Cattaneo M, Marchese P, Jacobson KA, Ruggeri Z (2002) New insights into the role of P2X1 in platelet function. Haematologica 87:13–14

    Google Scholar 

  74. Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF (2001) The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 86:1264–1271

    PubMed  CAS  Google Scholar 

  75. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave J-P, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198:661–667

    PubMed  CAS  Google Scholar 

  76. Mazzucato M, Cozzi MR, Pradella P, Ruggeri ZM, De Marco L (2004) Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow. Blood 104:3221–3227

    PubMed  CAS  Google Scholar 

  77. Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP (2007) Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109:566–576

    PubMed  CAS  Google Scholar 

  78. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). New Engl J Med 326:242–250

    PubMed  CAS  Google Scholar 

  79. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326:310–318

    PubMed  CAS  Google Scholar 

  80. Tangelder GJ, Slaaf DW, Arts T, Reneman RS (1988) Wall shear rate in arterioles in vivo: least estimates from platelet velocity profiles. Am J Physiol 254:H1059–H1064

    PubMed  CAS  Google Scholar 

  81. Haslam RJ, Cusack NJ (1981) Blood platelet receptors for ADP and for adenosine. In: Burnstock G (ed) Purinergic receptors. Receptors and recognition. Series B, Vol. 12. Chapman & Hall, London, pp 221–285

    Google Scholar 

  82. Hourani SMO, Cusack NJ (1991) Pharmacological receptors on blood platelets. Pharmacol Rev 43:243–298

    PubMed  CAS  Google Scholar 

  83. Mills DCB (1996) ADP receptors on platelets. Thromb Haemost 76:835–856

    PubMed  CAS  Google Scholar 

  84. Cusack NJ, Hourani SMO (2000) Platelet P2 receptors: from curiosity to clinical targets. J Auton Nerv Syst 81:37–43

    PubMed  CAS  Google Scholar 

  85. Cole B, Robison GA, Hartmann RC (1971) Studies on the role of cyclic AMP in platelet function. Ann New York Acad Sci 185:477–487

    CAS  Google Scholar 

  86. Mills DCB, Smith JB (1972) The control of platelet responsiveness by agents that influence cyclic AMP metabolism. Ann NY Acad Sci 201:391–399

    PubMed  CAS  Google Scholar 

  87. Haslam RJ, Taylor A (1971) Role of cyclic 3′-5′-adenosine monophosphate in platelet aggregation. In: Caen J (ed) platelet aggregation. Masson et Cie, Paris, pp 85–93

    Google Scholar 

  88. Salzman EW, Levine L (1971) Cyclic 3′,5′-adenosine monophosphate in human blood platelets. J Clin Invest 50:131–141

    PubMed  CAS  Google Scholar 

  89. Yang J, Wu J, Jiang H, Mortensen R, Austin S, Manning DR, Woulfe D, Brass LF (2002) Signaling through Gi family members in platelets. Redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J Biol Chem 277:46035–46042

    PubMed  CAS  Google Scholar 

  90. Macfarlane DE, Mills DCB (1981) Inhibition by ADP of prostaglandin induced accumulation of cyclic AMP in intact human platelets. J Cyclic Nucleotide Res 7:1–11

    PubMed  CAS  Google Scholar 

  91. Cattaneo M (2010) State of the art of new P2Y12 antagonists. Intern Emerg Med 5:385–391

    PubMed  Google Scholar 

  92. Colman RW (1990) Aggregin: a platelet ADP receptor that mediates activation. FASEB J 4:1425–1435

    PubMed  CAS  Google Scholar 

  93. Greco NJ, Yamamoto N, Jackson BW, Tandon NN, Moos M Jr, Jamieson GA (1991) Identification of a nucleotide-binding site on glycoprotein IIb. Relationship to ADP-induced platelet activation. J Biol Chem 266:13627–13633

    PubMed  CAS  Google Scholar 

  94. Macfarlane DE, Mills DCB, Srivastava PC (1982) Binding of 2-azidoadenosine [β-32P]diphosphate to the receptor on intact human blood platelets which inhibits adenylate cyclase. Biochemistry 21:544–549

    PubMed  CAS  Google Scholar 

  95. Macfarlane DE, Srivastava PC, Mills DCB (1983) 2-Methylthioadenosine[β-32P]diphosphate. An agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in intact blood platelets. J Clin Invest 71:420–428

    PubMed  CAS  Google Scholar 

  96. Gachet C, Cattaneo M, Ohlmann P, Hechler B, Lecchi A, Chevalier J, Cassel D, Mannucci PM, Cazenave J-P (1995) Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br J Haematol 91:434–444

    PubMed  CAS  Google Scholar 

  97. Nurden P, Savi P, Heilmann E, Bihour C, Herbert JM, Maffrand JP, Nurden A (1995) An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb–IIIa complex function. J Clin Invest 95:1612–1622

    PubMed  CAS  Google Scholar 

  98. Cristalli G, Mills DCB (1993) Identification of a receptor for ADP on blood platelets by photoaffinity labelling. Biochem J 291:875–881

    PubMed  CAS  Google Scholar 

  99. Baurand A, Raboisson P, Freund M, Léon C, Cazeneve J-P, Bourguignon J-J, Gachet C (2001) Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 412:213–221

    PubMed  CAS  Google Scholar 

  100. Tsien RY, Pozzan T, Rink TJ (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. TIBS 9:263–266

    CAS  Google Scholar 

  101. Rink TJ, Sage SO (1990) Calcium signaling in human platelets. Annu Rev Physiol 52:431–449

    PubMed  CAS  Google Scholar 

  102. Sage SO, Reast R, Rink TJ (1990) ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J 265:675–680

    PubMed  CAS  Google Scholar 

  103. Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7:1057–1066

    PubMed  CAS  Google Scholar 

  104. MacKenzie AB, Mahaut-Smith MP, Sage SO (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 271:2879–2881

    PubMed  CAS  Google Scholar 

  105. Vial C, Hechler B, Léon C, Cazenave J-P, Gachet C (1997) Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb Haemost 78:1500–1504

    PubMed  CAS  Google Scholar 

  106. Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith JB, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation: I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 273:2024–2029

    PubMed  CAS  Google Scholar 

  107. Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131:108–114

    PubMed  CAS  Google Scholar 

  108. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with α,β-methylene ATP. Thromb Haemost 85:303–308

    PubMed  CAS  Google Scholar 

  109. Vial C, Pitt SJ, Roberts J, Rolf MG, Mahaut-Smith MP, Evans RJ (2003) Lack of evidence for functional ADP-activated human P2X1 receptors supports a role for ATP during hemostasis and thrombosis. Blood 102:3646–3651

    PubMed  CAS  Google Scholar 

  110. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2002) P2X1-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 100:2499–2505

    PubMed  CAS  Google Scholar 

  111. Oury C, Kuijpers MJE, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, Feijge MAH, De Vos R, Vermylen J, Heemskerk JWM, Hoylaerts MF (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101:3969–3976

    PubMed  CAS  Google Scholar 

  112. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  113. Léon C, Hechler B, Vial C, Leray C, Cazenave J-P, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Letters 403:26–30

    PubMed  Google Scholar 

  114. Boyer JL, Romero-Avila T, Schachter JB, Harden TK (1996) Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol 50:1323–1329

    PubMed  CAS  Google Scholar 

  115. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation: II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273:2030–2034

    PubMed  CAS  Google Scholar 

  116. Hechler B, Léon C, Vial C, Vigne P, Frelin C, Cazenave J-P, Gachet C (1998) The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92:152–159

    PubMed  CAS  Google Scholar 

  117. Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, Herbert JM (1998) The role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett 422:291–295

    PubMed  CAS  Google Scholar 

  118. Torti M, Lapetina EG (2002) Roles of phospholipase C and phospholipase D in receptor mediated platelet activation. In: Gresele P, Page CP, Fuster V, Vermylen J (eds) Thrombotic and non-thrombotic disorders. Cambridge University Press, Cambridge, pp 238–259

    Google Scholar 

  119. Léon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazeneve J-P, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104:1731–1737

    PubMed  Google Scholar 

  120. Fabre J-E, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5:1199–1202

    PubMed  CAS  Google Scholar 

  121. Cattaneo M (2003) The platelet P2Y receptors as targets for new antithrombotic drugs. J Thromb Haemost 1:1133–1135

    PubMed  CAS  Google Scholar 

  122. Baurand A, Gachet C (2003) The P2Y1 receptor as a target for new antithrombotic drugs: a review of the P2Y1 antagonist MRS-2179. Cardiovascular Drug Reviews 21:67–76

    PubMed  CAS  Google Scholar 

  123. Hechler B, Eckly A, Ohlmann P, Cazenave J-P (1998) The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol 103:858–866

    PubMed  CAS  Google Scholar 

  124. Fagura MS, Dainty IA, McKay GD, Kirk IP, Humphries RG, Robertson MJ, Dougall IG, Leff P (1998) P2Y1-receptors in human platelets which are pharmacologically distinct from P2YADP-receptors. Br J Pharmacol 124:157–164

    PubMed  CAS  Google Scholar 

  125. Hollopeter G, Jantzen H-M, Vincent D, Li G, England L, Ramakrishnan V, Yang R-B, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    PubMed  CAS  Google Scholar 

  126. Cattaneo M, Lecchi A, Randi AM, McGregor JL, Mannucci PM (1992) Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 80:2787–2796

    PubMed  CAS  Google Scholar 

  127. Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ Jr, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107:1591–1598

    PubMed  CAS  Google Scholar 

  128. Ohlmann P, Laugwitz K-L, Nürnberg B, Spicher K, Schultz G, Cazenave J-P, Gachet C (1995) The human platelet ADP receptor activates Gi2 proteins. Biochem J 312:775–779

    PubMed  CAS  Google Scholar 

  129. Woulfe D, Yang J, Brass L (2001) ADP and platelets: the end of the beginning. J Clin Invest 107:1503–1505

    PubMed  CAS  Google Scholar 

  130. Jantzen H-M, Milstone DS, Gousset L, Conley PB, Mortensen RM (2001) Impaired activation of murine platelets lacking Gαi2. J Clin Invest 108:477–483

    PubMed  CAS  Google Scholar 

  131. Brass LF (2005) The molecular basis of platelet activation. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P (eds) Hematology basic principles and practice, 4th edn. Elsevier, Philadelphia, pp 1899–1914

    Google Scholar 

  132. Woulfe DS (2010) Akt signaling in platelets and thrombosis. Expert Rev Hematol 3:81–91

    PubMed  CAS  Google Scholar 

  133. Schoenwaelder SM, Ono A, Sturgeon S, Chan SM, Mangin P, Maxwell MJ, Turnbull S, Mulchandani M, Anderson K, Kauffenstein G, Rewcastle GW, Kendall J, Gachet C, Jackson SP (2007) Identification of a unique co-operative phosphoinositide 3-kinase signaling mechanism regulating integrin αIIbβ3 adhesive function in platelets. J Biol Chem 282:28648–28658

    PubMed  CAS  Google Scholar 

  134. Maffrand JP, Eloy F (1974) Synthesis of the thienopyridines and furopyridines of therapeutic interest. Eur J Med Chem 9:483–486

    CAS  Google Scholar 

  135. Bruno JJ, Molony BA (1983) Ticlopidine. In: Scriabine A (ed) New drugs annual: cardiovascular drugs. Raven, New York, pp 295–316

    Google Scholar 

  136. Gachet C, Cazenave J-P, Ohlmann P, Bouloux C, Defreyn G, Droit F, Maffrand J-P (1990) The thienopyridine ticlopidine selectively prevents the inhibitory effects of ADP but not of adrenaline on cAMP levels raised by stimulation of the adenylate cyclase of human platelets by PGE1. Biochem Pharmacol 40:2683–2687

    PubMed  CAS  Google Scholar 

  137. Defreyn G, Gachet C, Savi P, Droit F, Cazenave JP, Maffrand JP (1991) Ticlopidine and clopidogrel (SR 25990C) selectively neutralize ADP inhibition of PGE1-activated platelet adenylate cyclase in rats and rabbits. Thromb Haemost 65:186–190

    PubMed  CAS  Google Scholar 

  138. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84:891–896

    PubMed  CAS  Google Scholar 

  139. Gurbel PA, Bliden KP, Antonino MJ, Stephens G, Gretler DD, Jurek MM, Pakyz RE, Shuldiner AR, Conley PB, Tantry US (2009) The effect of elinogrel on high platelet reactivity during dual antiplatelet therapy and the relation to cyp 2c19*2 genotype: first experience in patients. J Thromb Haemost 8:43–53

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret L. Rand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Packham, M.A., Rand, M.L. Historical perspective on ADP-induced platelet activation. Purinergic Signalling 7, 283–292 (2011). https://doi.org/10.1007/s11302-011-9227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9227-x

Keywords

Navigation