Skip to main content
Log in

Genetic diversity of the sweet chestnut (Castanea sativa Mill.) in Central Europe and the western part of the Balkan Peninsula and evidence of marron genotype introgression into wild populations

Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The sweet chestnut (Castanea sativa Mill.) is a widely spread and important multipurpose tree species in the Mediterranean area, which has played an important role in human history. Natural events, such as glaciations, and human influence played significant roles in the distribution and genetic makeup of the sweet chestnut. In order to better understand how natural and human-mediated past events affected the current genetic diversity and structure of the sweet chestnut, we analysed populations from Central Europe and the western part of the Balkan Peninsula, utilizing ten polymorphic nuclear microsatellite markers. The study revealed the existence of three genetically and, to a large extent, geographically distinct and well-defined groups of sweet chestnut populations. Two not entirely separated groups of populations were detected in the northern part of the studied area and one in the southern. Our results indicate that the genetic structure of sweet chestnut populations in Central Europe and the western part of the Balkan Peninsula is the result of both natural colonization events and significant and lengthy human impact. Furthermore, it has been proven that the gene flow between cultivated/grafted trees’ and wild chestnut stands can influence their genetic structure. However, our results reveal that cultivated-to-wild introgression in the sweet chestnut is dependent on the close proximity of chestnut orchards and naturally occurring populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Belkhir K, Castric V, Bonhomme F (2002) IDENTIX, a software to test for relatedness in a population using permutation methods. Mol Ecol Notes 2:611–614. doi:10.1046/j.1471-8278.2002.00273.x

    Article  Google Scholar 

  • Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of north European trees. J Biogeogr 18:103–115. doi:10.2307/2845248

    Article  Google Scholar 

  • Beug HJ (1977) Vegetationsgeschichtliche Untersuchungen im Küstenbereich von Istrien (Jugoslawien). Flora 166:357–381

    Google Scholar 

  • Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511. doi:10.1016/S0169-5347(03)00225-8

    Article  Google Scholar 

  • Botstein D, White RL, Sholnick M, David RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botu M (2009) Romania. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:112–116

  • Bouffier VA, Maurer WD (2009) Germany. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:53–62

  • Bounous G (2009) Italy. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:72–84

  • Brande A (1973) Untersuchungen zur postglazialen Vegetationsgeschichte im Gebiet der Neretva-Niederungen (Dalmatien, Herzegowina). Flora 162:1–44

    Google Scholar 

  • Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241. doi:10.1046/j.1471-8286.2003.00410.x

    Article  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570

    Article  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi:10.1093/molbev/msl191

    Article  CAS  PubMed  Google Scholar 

  • Chumacero de Schawe C, Durka W, Tscharntke T, Hensen I, Kessler M (2013) Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia. Am J Bot 100:2271–2279. doi:10.3732/ajb.1300025

    Article  PubMed  Google Scholar 

  • Coart E, Vekemans X, Smulders MJM, Wagner I, van Huylenbroeck J, van Bockstaele E, Roldán-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12:845–857. doi:10.1046/j.1365-294X.2003.01778.x

    Article  CAS  PubMed  Google Scholar 

  • Comps B, Gomory D, Letouzey J, Thiebaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conedera M, Müller-Starck G, Fineschi S (1994) Genetic characterization of cultivated varieties of European chestnut (Castanea sativa Mill.) in Southern Switzerland. I. Inventory of chestnut varieties: history and perspectives. In: Antognozzi E (ed), Procedings of the International Congress on Chestnut, 20–23 October 1993, Spoleto, Italy, 299–302

  • Conedera M, Krebs P, Tinner W, Prandella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobot 13:161–179. doi:10.1007/s00334-004-0038-7

    Article  Google Scholar 

  • Cornille A, Giraud T, Bellard C, Tellier A, Le Cam B, Smulders MJ, Kleinschmit J, Roldán-Ruiz I, Gladieux P (2013) Postglacial recolonization history of the European crabapple (Malus sylvestris Mill.), a wild contributor to the domesticated apple. Mol Ecol 22:2249–2263. doi:10.1111/mec.12231

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Feurtey A, Gélin U, Ropars J, Misvanderbrugge K, Gladieux P, Giraud T (2015) Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 8:373–384. doi:10.1111/eva.12250

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:1119–1127

    Google Scholar 

  • Delplancke M, Alvarez N, Espíndola A, Joly H, Benoit L, Brouck E, Arrigo N (2011) Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers. Evol Appl 5:317–329. doi:10.1111/j.1752-4571.2011.00223.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B Met 39:1–38

    Google Scholar 

  • Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Consortium I, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559. doi:10.1111/j.1365-294X.2007.03299.x

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563. doi:10.1146/annurev.ecolsys.30.1.539

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondreal DNA restriction sites. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  Google Scholar 

  • Felsenstein J (1993) Phylip: phylogeny inference package. Computer program. University of Washington, Seattle

    Google Scholar 

  • Fernández-López J, Pereira-Lorenzo S (1993) Index and distribution of chestnut (Castanea sativa Mill.) traditional cultivars in Galicia. Instituto Nacional de Investigación y Technología Agraria y Alimentaria, Madrid, Spain (in Spanish)

  • Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol Ecol 9:1495–1503. doi:10.1046/j.1365-294x.2000.01029.x

    Article  CAS  PubMed  Google Scholar 

  • Gassert F, Schulte U, Husemann M, Ulrich W, Rödder D, Hochkirch A, Engel E, Meyer J, Habel JC (2013) From southern refugia to the northern range margin: genetic population structure of the common wall lizard, Podarcis muralis. J Biogeog 40:1475–1489. doi:10.1111/jbi.12109

    Article  Google Scholar 

  • Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50:1089–1103. doi:10.1139/G07-086

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Laranjo J, Peixoto F, Costa R, Ferreira-Cardoso J (2009) Portugal. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:106–111

  • Goodnight KF, Queller DC (1999) Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234. doi:10.1046/j.1365-294x.1999.00664.x

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Goulão L, Valdiviesso T, Santana C, Moniz Oliveira C (2001) Comparison between phenetic characterization using RAPD and ISSR markers and phenotypic data of cultivated chestnut (Castanea sativa Mill.). Genet Resour Crop Ev 48:329–338. doi:10.1023/A:1012053731052

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi:10.1111/j.1461-0248.2005.00739.x

    Article  PubMed  Google Scholar 

  • Havrdová A, Douda J, Krak K (2015) Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Mol Ecol 18:4759–4777. doi:10.1111/mec.13348

    Article  Google Scholar 

  • Hennion B (2009) France. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:44–47

  • Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004a) Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol 13:3437–3452. doi:10.1111/j.1365-294X.2004.02333.x

    Article  CAS  PubMed  Google Scholar 

  • Heuertz M, Hausman JF, Hardy OJ, Vendramin GG, Frascaria-Lacoste N, Vekemans X (2004b) Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southern European populations of the common ash (Fraxinus excelsior L.). Evolution 58:976–988. doi:10.1111/j.0014-3820.2004.tb00432.x

    PubMed  Google Scholar 

  • Heuertz M, Carnevale S, Fineschi S, Sebastiani F, Hausman JF, Paule L, Vendramin GG (2006) Chloroplast DNA phylogeography of European ashes, Fraxinus sp. (Oleaceae): roles of hybridization and life history traits. Mol Ecol 15:2131–2140. doi:10.1111/j.1365-294X.2006.02897.x

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.1111/j.1095-8312.1996.tb01434.x

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112. doi:10.1006/bijl.1999.0332

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549. doi:10.1046/j.1365-294x.2001.01202.x

    Article  CAS  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70. doi:10.2307/4615733

    Google Scholar 

  • Huntley B, Birks H (1983) An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Idžojtić M, Zebec M, Poljak I, Medak J (2009) Variation of sweet chestnut (Castanea sativa Mill.) populations in Croatia according to the morphology of fruits. Sauteria 18:232–333

    Google Scholar 

  • Idžojtić M, Zebec M, Poljak I, Šatović Z, Liber Z (2012) Analiza genetske raznolikosti “lovranskog maruna” (Castanea sativa Mill.) korištenjem mikrosatelitnih biljega. Sumar List 136(9–10):577–585

    Google Scholar 

  • Jahns S, van den Bogaard C (1998) New palynological and tephrostratigraphical investigations of two salt lagoons on the island of Mljet, south Dalmatia, Croatia. Veg Hist Archaeobot 7:219–234. doi:10.1007/BF01146195

    Article  Google Scholar 

  • Ježić M, Krstin LJ, Poljak I, Liber Z, Idžojtić M, Jelić M, Meštrović J, Zebec M, Ćurković-Perica M (2014) Castanea sativa: genotype-dependent recovery from chestnut blight. Tree Genet Genomes 10:101–110. doi:10.1007/s11295-013-0667-z

    Article  Google Scholar 

  • Johnson GP (1988) Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arboretum 69:25–49

  • Konovalov DA, Heg D (2008) A maximum-likelihood relatedness estimator allowing for negative relatedness values. Mol Ecol Notes 8:256–263. doi:10.1111/j.1471-8286.2007.01940.x

  • Konovalov DA, Manning C, Henshaw MT (2004) KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol Ecol Notes 4:779–782. doi:10.1111/j.1471-8286.2004.00796.x

    Article  Google Scholar 

  • Krebs P, Conedera M, Pradella M, Torrioni D, Felber M, Tinner W (2004) Quaternary refugia of sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veg Hist Archaeobot 13:145–160. doi:10.1007/s00334-004-0041-z

    Article  Google Scholar 

  • Lang P, Dane F, Kubisiak TL, Huang HW (2007) Molecular evidence for an Asian origin and a unique westward migration of species in the genus Castanea via Europe to North America. Mol Phylogenet Evol 43:49–59. doi:10.1016/j.ympev.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  • Liepelt S, Cheddadi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer D, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—a synthesis from palaeobotanic and genetic data. Rev Palaeobot Palyno 153:139–149. doi:10.1016/j.revpalbo.2008.07.007

    Article  Google Scholar 

  • Liu J (2002) POWERMARKER—a powerful software for marker data analysis. North Carolina State University, Bioinformatics Research Center, Raleigh

    Google Scholar 

  • Luikart GF, Allendorf W, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247. doi:10.1093/jhered/89.3.238

    Article  CAS  PubMed  Google Scholar 

  • Lusini I, Velichkov I, Pollegioni P, Chiocchini F, Hinkov G, Zlatanov T, Cherubini M, Mattioni C (2014) Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conserv Genet 15:283–293. doi:10.1007/s10592-013-0537-0

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit R, de Beaulieu JL (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. doi:10.1111/j.1469-8137.2006.01740.x

    Article  CAS  PubMed  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa Mill. Mol Breeding 11:127–136. doi:10.1023/A:1022456013692

    Article  CAS  Google Scholar 

  • Martín MA, Moral A, Martín LM, Alvarez JB (2007) The genetic resources of European sweet chestnut (Castanea sativa Miller) in Andalusia, Spain. Genet Resour Crop Evol 54:379–387. doi:10.1007/s10722-005-5969-z

    Article  Google Scholar 

  • Martín MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martín LM (2009) Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeats (SSRs) markers. Ann Appl Biol 154:389–398. doi:10.1111/j.1744-7348.2008.00309.x

    Article  CAS  Google Scholar 

  • Martín MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010a) Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet Genomes 6:735–744. doi:10.1007/s11295-010-0287-9

  • Martín MA, Alvarez JB, Martín LM, Mattioni C, Cherubini M, Villani F, Ruiz JC (2010b) Traditional chestnut cultivars in southern Spain: a case of endangered genetic resources. Acta Hortic 866:143–150. doi:10.17660/ActaHortic.2010.866.15

    Article  Google Scholar 

  • Martín MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010c) Genetic characterization of traditional chestnut varieties in Italy using microsatellites (simple sequence repeats). Ann Appl Biol 157:37–44. doi:10.1111/j.1744-7348.2010.00407.x

    Article  CAS  Google Scholar 

  • Martín MA, Mattioni C, Molina JR, Alvarez JB, Cherubini M, Herrera MA, Villani F, Martín LM (2012) Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet Genomes 8:127–136. doi:10.1007/s11295-011-0427-x

    Article  Google Scholar 

  • Martín MA, Mattioni C, Cherubini M, Villani F, Martín LM (2016) A comparative study of European chestnut varieties in relation to adaptive markers. Agroforest Syst. doi:10.1007/s10457-016-9911-5

    Google Scholar 

  • Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genomes 4:563–574. doi:10.1007/s11295-008-0132-6

    Article  Google Scholar 

  • Mattioni C, Martín MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100:951–961. doi:10.3732/ajb.1200194

    Article  PubMed  Google Scholar 

  • Medak J, Idžojtić M, Novak-Agbaba S, Ćurković-Perica M, Mujić I, Poljak I, Juretić D, Prgomet Ž (2009) Croatia. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:40–43

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  PubMed Central  Google Scholar 

  • O’Connor K, Powell M, Nock C, Shapcott A (2015) Crop to wild gene flow and genetic diversity in a vulnerable Macadamia (Proteaceae) species in New South Wales, Australia. Biol Conserv 191:504–511. doi:10.1016/j.biocon.2015.08.001

    Article  Google Scholar 

  • Pamilo P (1990) Comparison of relatedness estimators. Evolution 44:1378–1382

    Article  Google Scholar 

  • Pascual M, Aquadro CF, Soto V, Serra L (2001) Microsatellite variation in colonizing and palearctic populations of Drosophila suboscura. Mol Biol Evol 18:731–740. doi:10.1093/oxfordjournals.molbev.a003855

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Lorenzo S, Fernandez-Lopez J, Moreno-Gonzalez J (1996) Variability and grouping of northwestern Spanish chestnut cultivars. II. Isoenzymatic traits. J Am Soc Hortic Sci 121:190–197

    Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández B, Ascasíbar-Errasti J, Sau F, Ciordia-Ara M (2001a) Spanish chestnut cultivars. Hortic Sci 36:344–347

    Google Scholar 

  • Pereira-Lorenzo S, Ríos D, González-Pérez J, Cubas F, Perdomo A, Calzadilla C, Ramos-Cabrer AM (2001b) Chestnut cultivars on the Canary Islands. For Snow Landsc Res 76:445–450

    Google Scholar 

  • Pereira-Lorenzo S, Díaz-Hernández MB, Ramos-Cabrer AM (2006) Use of highly discriminating morphological characters and isozymes in the study of Spanish chestnut cultivars. J Am Soc Hortic Sci 131:770–779

    CAS  Google Scholar 

  • Pereira-Lorenzo S, Díaz-Hernández MB, Ramos-Cabrer AM (2009) Spain. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:134–141

  • Pereira-Lorenzo S, Lourenço Costa RM, Ramos-Cabrer AM, Marques Ribeiro CA, Serra da Silva MF, Manzano G, Barreneche T (2010) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 6:701–715. doi:10.1007/s11295-010-0285-y

    Article  Google Scholar 

  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu JL, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Manag 156:49–74. doi:10.1016/S0378-1127(01)00634-x

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL (2003) Glacial refugia: hotspots but not meltingpots of genetic diversity. Science 300:1563–1565. doi:10.1126/science.1083264

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer programme for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503. doi:10.1093/jhered/90.4.502

    Article  Google Scholar 

  • Poljak I (2014) Morphological and genetic diversity of populations and chemical composition of fruits of European sweet chestnut (Castanea sativa Mill.) in Croatia. Dissertation, Faculty of Forestry, University of Zagreb (in Croatian)

  • Poljak I, Vahčić N, Gačić M, Idžojtić M (2016) Morphological characterization and chemical composition of fruits of the traditional Croatian chestnut variety ‘Lovran Marron’. Food Technol Biotechnol 54:189–199. doi:10.17113/ftb.54.02.16.4319

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Ramos-Cabrer AM, Pereira-Lorenzo S (2005) Genetic relationship between Castanea sativa Mill. trees from North-western to South Spain based on morphological traits and isoenzymes. Genet Resour Crop Ev 52:879–890. doi:10.1007/s10722-003-6094-5

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • SAS Institute (2004) SAS/STAT® 9.1 user’s guide. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Schmidt R, Müller J, Drescher-Schneider R, Krisai R, Szeroczynska K, Barić A (2000) Changes in lake level and trophy at Lake Vrane, a large karstic lake on the Island of Cres (Croatia), with respect to paleoclimate and anthropogenic impacts during the last approx. 16,000 years. J Limnol 2:113–130. doi:10.4081/jlimnol.2000.113

    Article  Google Scholar 

  • Soylu A, Serdar Ü, Ertan E, Mert C (2009) Turkey. In: Avanzato D (ed) Following chestnut footprints (Castanea spp.)—cultivation and culture, folklore and history, traditions and use. Scripta Horticult 9:155–160

  • Sučić J (1953) O arealu pitomog kestena (Castanea sativa Mill.) na području Srebrenice, sa kratkim osvrtom na ostala nalazišta kestena u NR BiH. Institut za naučna šumarska istraživanja u Sarajevu, Sarajevo

  • Šoštarić R, Küster H (2001) Roman plant remains from Veli Brijun (island of Brioni), Croatia. Veg Hist Archaeobot 10:227–233. doi:10.1007/PL00006934

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464. doi:10.1046/j.1365-294x.1998.00289.x

    Article  CAS  PubMed  Google Scholar 

  • Temunović M, Franjić J, Šatović Z, Grgurev M, Frascaria-Lacoste N, Fernández-Manjarrés JF (2012) Environmental heterogeneity explains the genetic structure of continental and Mediterranean populations of Fraxinus angustifolia Vahl. PLoS One 7:e42764. doi:10.1371/journal.pone.0042764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Temunović M, Frascaria-Lacoste N, Franjić J, Šatović Z, Fernández-Manjarrés JF (2013) Identifying refugia from climate change using coupled ecological and genetic data in a transitional Mediterranean-temperate tree species. Mol Ecol 22:2128–2142. doi:10.1111/mec.12252

    Article  PubMed  Google Scholar 

  • Torello Marinoni D, Akkak A, Beltramo C, Guaraldo P, Boccacci P, Bounous G, Ferrara AM, Ebone A, Viotto E, Botta R (2013) Genetic and morphological characterization of chestnut (Castanea sativa Mill.) germplasm in Piedmont (north-western Italy). Tree Genet Genomes 9:1017–1030. doi:10.1007/s11295-013-0613-0

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  • van Zeist W, Bottema S (1991) Late Quaternary vegetation of the Near East. Reichert L, Wiesbaden

    Google Scholar 

  • van Zeist W, Woldring H, Stapert D (1975) Late quaternary vegetation and climate of southwestern Turkey. Palaeohistoria 17:53–143

    Google Scholar 

  • Villani F, Pigliucci M, Benedettelli S, Cherubini M (1991) Genetic differentiation among Turkish chestnut (Castanea sativa Mill.) populations. Heredity 66:131–136. doi:10.1038/hdy.1991.16

    Article  Google Scholar 

  • Villani F, Pigliucci M, Lauteri M, Cherubini M (1992) Congruence between genetic, morphometric, and physiological data on differentiation of Turkish chestnut (Castanea sativa). Genome 35:251–256. doi:10.1139/g92-038

    Article  Google Scholar 

  • Villani F, Pigliucci M, Cherubini M (1994) Evolution of Castanea sativa Mill. in Turkey and Europe. Genet Res 63:109–116. doi:10.1017/S0016672300032213

    Article  Google Scholar 

  • Villani F, Ansotta AS, Cherubini M, Cesaroni D, Sbordoni V (1999) Genetic structure of natural populations of Castanea sativa in Turkey: evidence of a hybrid zone. J Evolution Biol 12:233–244. doi:10.1046/j.1420-9101.1999.00033.x

    Article  Google Scholar 

  • Wang JL (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053. doi:10.1046/j.1523-1739.2001.0150041039.x

    Article  Google Scholar 

  • Zeller Z (2013) History of the Nagymaros chestnut groves. In: Radócz L (ed) Chestnut cultivation and revitalization program in Nagymaros. Debrecen University, Hungary, pp 13–18

    Google Scholar 

  • Zeller Z, Bürgés G (2013) Environmental role and value of the Nagymaros chestnut groves. In: Radócz L (ed) Chestnut cultivation and revitalization program in Nagymaros. Debrecen University, Hungary, pp 19–23

    Google Scholar 

  • Zohary D, Hopf M (1988) Domestication of plants in the Old World. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Croatian Ministry of Science Education and Sport (project 068-0242108-2773), Swiss National Science Foundation (SCOPES project No. IZ73Z0_152525/1) and Croatian Science Foundation (Project No. 5381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Liber.

Additional information

Communicated by A. Kremer

Data archiving statement

Microsatellites data will be published on the DRYAD repository.

Electronic supplementary material

Table S1

Sample size (n) and geographic coordinates for 16 Castanea sativa populations (n = 327) (DOCX 13 kb)

Table S2

Repeat motifs, size ranges, number of alleles (N a) and polymorphic information content (PIC) for ten microsatellite loci used in 15 wild Castanea sativa populations (n = 301) (DOCX 13 kb)

Table S3

Pairwise F ST values (lower diagonal) and their significance (upper diagonal) among 15 wild Castanea sativa populations (DOCX 16 kb)

Table S4

Relatedness (r) between ‘Lovran Marron’ and individual trees sampled from 15 wild Castanea sativa populations (DOCX 57 kb)

Fig. S1

Inference of K, the most probable number of clusters, using STRUCTURE software, based on microsatellite analysis of 301 total samples of Castanea sativa (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poljak, I., Idžojtić, M., Šatović, Z. et al. Genetic diversity of the sweet chestnut (Castanea sativa Mill.) in Central Europe and the western part of the Balkan Peninsula and evidence of marron genotype introgression into wild populations. Tree Genetics & Genomes 13, 18 (2017). https://doi.org/10.1007/s11295-017-1107-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1107-2

Keywords

Navigation