Skip to main content
Log in

Diversity in the breadfruit complex (Artocarpus, Moraceae): genetic characterization of critical germplasm

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Breadfruit (Artocarpus altilis, Moraceae) is a traditional staple crop in Oceania and has been introduced throughout the tropics. This study examines important germplasm collections of breadfruit and its closest wild relatives and aims to (1) characterize genetic diversity, including identification of unknown and duplicate accessions, (2) evaluate genetic structure and hybridization within the breadfruit complex, and (3) compare utility of microsatellite markers to previously reported amplified fragment length polymorphism (AFLP) and isozyme markers in differentiating among cultivars. Data for 19 microsatellite loci were collected for 349 individuals (representing 255 accessions) including breadfruit (A. altilis), two wild relatives (Artocarpus camansi and Artocarpus mariannensis), and putative hybrids (A. altilis × A. mariannensis). Accessions were of mixed ploidy and regional origin, but predominantly from Oceania. Microsatellite loci collectively had a polymorphic information content (PIC) of 0.627 and distinguished 197 unique genotypes sorted into 129 different lineages, but a single genotype accounts for 49 % of all triploid breadfruit examined. Triploid hybrids and diploid A. altilis exhibited the highest levels of diversity as measured by allele number and gene diversity. Most accessions (75 %) of unknown origin matched either a known genotype or lineage group in the collection. Putative hybrids all had genetic contributions from A. mariannensis but ranged in the level of genetic contribution from A. altilis. Microsatellite markers were found to be more informative than isozyme markers and slightly less informative, with regard to accession discrimination, than AFLP markers. This set of microsatellite markers and the dataset presented here will be valuable for breadfruit germplasm management and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebowale KO, Olu-Oqolabi BI, Olawumi EK, Lawal OS (2005) Functional properties of native, physically and chemically modified breadfruit (Artocarpus altilis) starch. Ind Crops Prod 21:343–351

    Article  CAS  Google Scholar 

  • Baric S, Wagner J, Storti A, Dalla Via J (2010) Application of an extended set of microsatellite DNA markers for the analysis of presumed synonym cultivars of apple. Acta Hortic 918:303–308

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106. doi:10.1111/j.1365-294X.2004.02209.x

    Article  CAS  PubMed  Google Scholar 

  • Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol Ecol Notes 5:684–687

    Article  CAS  Google Scholar 

  • Clark LV, Jasieniuk M (2011) POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour 11:562–566. doi:10.1111/j.1755-0998.2011.02985.x

    Article  PubMed  Google Scholar 

  • Creste S, Neto AT, Vencovsky R, De OSilva S, Figueira A (2004) Genetic diversity of Musa diploid and triploid accessions from the Brazilian banana breeding program estimated by microsatellite markers. Genet Resour Crop Evol 51:723–733

    Article  CAS  Google Scholar 

  • de Jesus ON, de Oliveira S, Amorim EP, Ferreira CF, Salabert JM, de Campos, de Gaspari-Silva G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol. 13:41. doi:10.1186/1471-2229-13-41

  • De Silva HN, Hall AJ, Rikkerink E, McNeilage MA, Fraser LG (2005) Estimation of allele frequencies in polyploids under certain patterns of inheritance. Heredity 95:327–334. doi:10.1038/sj.hdy.6800728

    Article  PubMed  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408. doi:10.1007/s00122-004-1645-5

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–20

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

  • Fosberg FR (1960) Introgression in Artocarpus in Micronesia. Brittonia 12:101–113

    Article  Google Scholar 

  • Fownes JH, Raynor WC (1991) Seasonality and yield of breadfruit cultivars in the indigenous agroforestry system of Pohnpei, Federated States of Micronesia. Trop Ag (Trinidad) 70(2):103–9

    Google Scholar 

  • Ghislain M, Spooner DM, Rodriguez F, Villamon F, Nuñez J, Vásquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890. doi:10.1007/s00122-003-1494-1497

    Article  CAS  PubMed  Google Scholar 

  • Giraldo E, Lopez-Corrales M, Hormaza JI (2008) Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. J Am Soc Hort Sci 133(1):69–77

    CAS  Google Scholar 

  • Gunn BF, Aradhya M, Salick JM, Miller AJ, Yang YP, Liu L, Hai X (2010) Genetic variation in walnuts (Juglans regia L. and J. sigillata Dode, Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97:60–671

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8278.2002.00305.x

    Article  Google Scholar 

  • Hirano R, Oo TH, Watanabe KN (2010) Myanmar mango landraces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia. Genome 53:321–330

    Article  CAS  PubMed  Google Scholar 

  • Hoshino AA, Bravo JP, Nobile PM, Morelli KA (2012) Microsatellites as tools for genetic diversity analysis. In: Caliskan M (ed) Genetic diversity in microorganisms. In Tech, Croatia, pp 149–170

    Google Scholar 

  • Irish BM, Cuevas HE, Simpson SA, Scheffler BE, Sardos J, Ploetz R, Goenaga R (2014) Musa spp. germplasm management: microsatellite fingerprinting of USDA–ARS national plant germplasm system collection. Crop Sci 54:2140–2151

  • Jones AMP, Murch SJ, Ragone D (2010) Diversity of breadfruit (Artocarpus altilis, Moraceae) seasonality: a resource for year-round nutrition. Econ Bot 64(4):340–351

    Article  Google Scholar 

  • Jones AMP, Ragone D, Aiona K, Lane WA, Murch SJ (2011) Nutritional and morphological diversity of breadfruit (Artocarpus, Moraceae): identification of elite cultivars for food security. J Food Compos Anal 24:1091–1102. doi:10.1016/j.jfca.2011.04.002

    Article  CAS  Google Scholar 

  • Jones AMP, Baker R, Ragone D, Murch SJ (2013) Identification of pro-vitamin A carotenoid-rich cultivars of breadfruit (Artocarpus, Moraceae). J Food Compos Anal 31(1):51–61. doi:10.1016/j.jfca.2013.03.003

    Article  CAS  Google Scholar 

  • Korir NK, Li Y, Leng XP, Wu Z, Wang C, Fan JG (2013) A novel and efficient strategy for practical identification of tomato (Solanum lycopersicon) varieties using modified RAPD fingerprints. Genet Mol Res 12(2):1816–1828

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Sun F (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol 20(12):2123–2131

  • Leakey CLA, (1977) Breadfruit reconnaissance study in the Caribbean region. CIAT/InterAmerican Development Bank

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77. doi:10.1186/1471-2156-11-77

    Article  PubMed Central  PubMed  Google Scholar 

  • Markham C (1904) The voyages of Pedro Fernandez de Quiros. Hakluyt Society, London, pp 1595–1606, Vol. I

    Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144

    Article  CAS  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  • Mengoni A, Gori A, Bazzicalupo M (2000) Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breed 119:311–317

    Article  CAS  Google Scholar 

  • Miller A, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–414

    Article  PubMed  Google Scholar 

  • Moe KT, Kwon SW, Park YJ (2012) Trends in genomic and molecular marker systems for the development of some underutilized crops. Genes Genom 34:451–466

    Article  CAS  Google Scholar 

  • Morton JF (1990) Under-exploited fruit-vegetables can enhance the world food supply. Acta Hortic 275:401–408

    Google Scholar 

  • Motilal LA, Zhang D, Mischke S, Meinhardt LW, Umaharan P (2013) Microsatellite-aided detection of genetic redundancy improves management of the international Cocoa Genebank, Trinidad. Tree Genet Genomes 9:1395–1411

    Article  Google Scholar 

  • Omubuwajo TO (2007) Breadfruit as a key component of sustainable livelihoods in Nigeria: prospects, opportunities and challenges. Acta Hortic 757:121–124

    Google Scholar 

  • Powell D (1977) Voyage of the plant nursery, HMS providence. Econ Bot 31:387–431, 1791–1793

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–59

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ragone D (1991) Collection, establishment and evaluation of a germplasm collection of Pacific Island breadfruit. Dissertation, University of Hawaii

  • Ragone D (1995) Description of Pacific Island breadfruit cultivars. Acta Hortic 413:93–98

    Google Scholar 

  • Ragone D (1997) Breadfruit: Artocarpus altilis (Parkinson) Fosberg. Promoting the conservation and use of underutilized and neglected crops 10. IPGRI, Inter Plant Genetic Resources Inst, Rome

    Google Scholar 

  • Ragone D (2001) Chromosome numbers and pollen stainability of three species of Pacific Island breadfruit (Artocarpus, Moraceae). Am J Bot 88(4):693–696

    Article  CAS  PubMed  Google Scholar 

  • Ragone D (2007) Breadfruit: diversity, conservation, and potential. Acta Hortic 757:19–30

    Google Scholar 

  • Ragone D, Cavaletto CG (2006) Sensory evaluation of fruit quality and nutritional composition of 20 breadfruit (Artocarpus, Moraceae) cultivars. Econ Bot 60(5):335–346

    Article  Google Scholar 

  • Ragone D, Wiseman J (2007) Developing and applying descriptors for breadfruit germplasm. Acta Hortic 757:71–80

    Google Scholar 

  • Ragone D, Tavana G, Stevens JM, Stewart PA, Stone R, Cox PM, Cox PA (2004) Nomenclature of breadfruit cultivars in Samoa: saliency, ambiguity, and mononomiality. J Ethnobiol 24(1):33–49

    Google Scholar 

  • Rajora OP, Rahman MH (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor Appl Genet 106:470–477

    CAS  PubMed  Google Scholar 

  • Roberts-Nkrumah LB (2007) An overview of breadfruit (Artocarpus altilis) in the Caribbean. Acta Hortic 757:51–60

    Google Scholar 

  • Schnell RJ, Brown JS, Olano CT, Meerow AW, Campbell RJ, Khun DN (2006) Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. J Am Soc Hort Sci 131(2):214–224

    CAS  Google Scholar 

  • Szikriszt B, Hegedüs A, Halász J (2011) Review of genetic diversity studies in almond (Prunus dulcis). Acta Agronom 59(4):379–395

    CAS  Google Scholar 

  • Taylor M, Kete T, Tuia V (2009) Underutilized species in the Pacific: an untapped source of nutritional and economic wealth. Acta Hortic 806:235–240

    Google Scholar 

  • Tomiuk J, Guldbrandtsen B, Loeschcke V (2009) Genetic similarity of polyploids: a new version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differentiation. Mol Ecol Resour 9:1364–1368. doi:10.1111/j.1755-0998.2009.02623.x

    Article  PubMed  Google Scholar 

  • Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM (2013) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes. doi:10.1007/s11295-013-0671-3

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wilder GP (1928) Breadfruit of Tahiti. B.P. Bishop museum. Bulletin 50, Honolulu

    Google Scholar 

  • Witherup C, Ragone D, Wiesner-Hanks T, Irish B, Scheffler B, Simpson, Zee F, Zuberi MI, Zerega NJC (2013) Development of microsatellite loci in Artocarpus altilis (Moraceae) and cross-amplification in congeneric species. Appl Plant Sci 1(7):1200423. doi:10.3732/apps.1200423

    Google Scholar 

  • Wootton M, Tumaalii F (1984) Breadfruit production, utilisation and composition—a review. Food Tech 37(10):464–465

    Google Scholar 

  • Wünsch A, Hormaza JI (2007) Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Scientia Hortic 113(1):37–43

    Article  Google Scholar 

  • Wünsch A, Carrera M, Hormaza JI (2006) Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genet Resour Crop Ev 53:925–932

    Article  Google Scholar 

  • Xuan H, Ding Y, Spann D, Möller O, Büchele M, Neumüller M (2011) Microsatellite markers (SSR) as a tool to assist in identification of European plum (Prunus domestica). Acta Hortic 918:689–692

    Google Scholar 

  • Zerega NJC, Ragone D, Motley TJ (2004) Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot 91(5):760–6

    Article  PubMed  Google Scholar 

  • Zerega NJC, Ragone D, Motley TJ (2005) Systematics and species limits of breadfruit (Artocarpus, Moraceae). Sys Bot 30:603–15

    Article  Google Scholar 

  • Zerega NJC, Ragone D, Motley TJ (2006) Breadfruit origins, diversity, and human-facilitated distribution. In: Motley TJ, Zerega NJC, Cross H (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 213–238

    Google Scholar 

Download references

Acknowledgments

The authors thank the Breadfruit Institute and the USDA/ARS National Plant Germplasm System for use of plant material, Ian Cole for collecting the samples at Kahanu Garden at NTBG, the Trustees and Fellows of NTBG for their support of the Breadfruit Institute, and two reviewers who provided valuable feedback that improved the manuscript. The research was made possible in part by National Science Foundation Grant DEB-0919119 and support from USDA/ARS and the Chicago Botanic Garden.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Information on germplasm materials used in this study are publicly available online through NTBG (http://ntbg.org/breadfruit/database) and the ARS’s GRIN databases (http://www.ars-grin.gov/npgs/acc/acc_queries.html).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyree Zerega.

Additional information

Communicated by W. Ratnam

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Data from Table 1 is provided in a spreadsheet so that it may be manipulated by users who would like to sort by different criteria (XLSX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerega, N., Wiesner-Hanks, T., Ragone, D. et al. Diversity in the breadfruit complex (Artocarpus, Moraceae): genetic characterization of critical germplasm. Tree Genetics & Genomes 11, 4 (2015). https://doi.org/10.1007/s11295-014-0824-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0824-z

Keywords

Navigation