Skip to main content

Advertisement

Log in

Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate

  • Opinion Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The Forest ecosystem genomics Research: supporTing Transatlantic Cooperation project (FoResTTraC, http://www.foresttrac.eu/) sponsored a workshop in August 2010 to evaluate the potential for using a landscape genomics approach for studying plant adaptation to the environment and the potential of local populations for coping with changing climate. This paper summarizes our discussions and articulates a vision of how we believe forest trees offer an unparalleled opportunity to address fundamental biological questions, as well as how the application of landscape genomic methods complement to traditional forest genetic approaches that provide critical information needed for natural resource management. In this paper, we will cover four topics. First, we begin by defining landscape genomics and briefly reviewing the unique situation for tree species in the application of this approach toward understanding plant adaptation to the environment. Second, we review traditional approaches in forest genetics for studying local adaptation and identifying loci underlying locally adapted phenotypes. Third, we present existing and emerging methods available for landscape genomic analyses. Finally, we briefly touch on how these approaches can aid in understanding practical topics such as management of tree populations facing climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111

    Article  Google Scholar 

  • Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends in Genetics 27(7):258–266

    Article  PubMed  CAS  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631. doi:10.1038/nature08800

    Article  PubMed  CAS  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH (2009a) Identifying future research needs in landscape genetics: where to from here? Landsc Ecol 24(4):455–463

    Article  Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ (2009b) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32(5):818–830

    Article  Google Scholar 

  • Barrett RDH, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12(1):767–780

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc London, Ser B 263(1377):1619–1626

    Article  Google Scholar 

  • Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11(12):867–879. doi:10.1038/nrg2896

    Article  PubMed  CAS  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89(9):2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21(3):697–708. doi:10.1111/j.1523-1739.2007.00685

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153(1–2):51–68. doi:10.1016/s0304-3800(01)00501-4

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85(7):1826–1832. doi:10.1890/03-3111

    Article  Google Scholar 

  • Boutet I, Tanguy A, Guen DL, Piccino P, Hourdez S, Legendre P, Jollivet D (2009) Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society B-Biological Sciences 276:3071–3079

    Article  CAS  Google Scholar 

  • Bradshaw AD (1972) Some of the evolutionary consequences of being a plant. Evol Biol 5:25–47

    Article  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9(1):49–56. doi:10.1016/j.plant.2003.11.006

    Article  PubMed  CAS  Google Scholar 

  • Campbell RK (1979) Genecology of Douglas-fir in a watershed in the Oregon Cascades. Ecology 60(5):1036–1050

    Article  Google Scholar 

  • Chen J, Kallman XM, Gyllenstrand N, Zaina G, Morgante M, Bousquet J, Eckert A, Wegrzyn J, Neale D, Lagercrantz U, Lascoux M (2012) Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865–881

    Article  PubMed  CAS  Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4):1411–1423. doi:10.1534/genetics.110.114819

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, de los Campos G, Perez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–U406. doi:10.1534/Genetics.110.118521

    Article  PubMed  CAS  Google Scholar 

  • Cumbie WP, Eckert A, Wegrzyn J, Whetten R, Neale D, Goldfarb B (2011) Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity 107(2):105–114. doi:10.1038/hdy.2010.168

    Article  PubMed  CAS  Google Scholar 

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19(17):3596–3602

    Article  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genomewide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  PubMed  CAS  Google Scholar 

  • Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A, Casasoli M, Chancerel E, Bodenes C, Alberto F, Kremer A (2010) Contrasting relations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 105(4):401–411. doi:10.1038/hdy.2009.170

    Article  PubMed  CAS  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modeling 196:483–493

    Article  Google Scholar 

  • Eckert AJ, Dyer RJ (2012) Defining the landscape of adaptive genetic diversity. Mol Ecol 21(12):2836–2838. doi:10.1111/j.1365-294X.2012.05615.x

    Article  PubMed  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Asssociation genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182(4):1289–1302. doi:10.1534/Genetics.108.102350

    Article  CAS  Google Scholar 

  • Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183(1):289–298

    Article  PubMed  Google Scholar 

  • Eckert AJ, Bower AD, Gonzalez-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010a) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19(17):3789–3805

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale DB (2010b) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185(3):969–982

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Shahi H, Datwyler SL, Neale DB (2012) Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae). Am J Bot 99(8):1323–1334

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  PubMed  CAS  Google Scholar 

  • Eveno E, Collada C, Guevara MA, Leger V, Soto A, Diaz L, Leger P, Gonzalez-Martinez SC, Cervera MT, Plomion C, Garnier-Gere PH (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437

    Article  PubMed  CAS  Google Scholar 

  • Favre J, Brown S (1996) A flow cytometric evaluation of the nuclear DNA content and GC percent in genomes of European oak species. Ann For Sci 53:915–917

    Article  Google Scholar 

  • Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891

    Article  PubMed  CAS  Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 333(6052):86–89

    Article  Google Scholar 

  • Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genetics 7(11):e1002355

    Article  PubMed  CAS  Google Scholar 

  • Gailing O, Vornam B, Leinemann L, Finkeldey R (2009) Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model. Physiol Plant 137(4):509–519. doi:10.1111/j.1399-3054.2009.01263.x

    Article  PubMed  CAS  Google Scholar 

  • Gnirke A, Melnikov A, Maguire J et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172(3):1915–1926. doi:10.1534/Genetics.105.047126

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101(1):19–26. doi:10.1038/hdy.2008.21

    Article  PubMed  CAS  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modelling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  PubMed  Google Scholar 

  • Grivet D, Sork VL, Westfall RD, Davis FW (2008) Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning. Mol Ecol 17(1):139–156. doi:10.1111/J.1365-294x.2007.03498.X

    Article  PubMed  Google Scholar 

  • Grivet D, Sebastiani F, Alia R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, Gonzalez-Martinez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116

    Article  PubMed  CAS  Google Scholar 

  • Hancock AM, Di Rienzo A (2008) Detecting the genetic signature of natural selection in human populations: models, methods, and data. Annu Rev Anthropol 37:197–217

    Article  PubMed  Google Scholar 

  • Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, Coop G, Di Rienzo A (2008) Adaptations to climate in candidate genes for common metabolic disorders. PLos Genetics 4(2):e32. doi:10.1371/journal.pgen.0040032

    Article  PubMed  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58(3):199–207

    Article  Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21(6):797–807

    Article  Google Scholar 

  • Holliday JA, Ralph SG, White R, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytol 178(1):103–122

    Article  PubMed  CAS  Google Scholar 

  • Holliday JA, Ritland K, Aitken SN (2010a) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol 188(2):501–514. doi:10.1111/j.1469-8137.2010.03380

    Article  Google Scholar 

  • Holliday JA, Yuen M, Ritland K, Aitken SN (2010b) Postglacial history of a widespread conifer produces inverse clines in selective neutrality tests. Mol Ecol 19(18):3857–3864. doi:10.1111/j.1365-294X.2010.04767

    Article  CAS  Google Scholar 

  • Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using Random Forest. G3: Genes| Genomics| Genetics 2:1085–1093.10.1534/g3.112.002733

  • Hurme P, Repo T, Savolainen O, Paakkonen T (1997) Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can J Forest Res 27(5):716–723

    Article  Google Scholar 

  • Hurme P, Sillanpaa MJ, Arjas E, Repo T, Savolainen O (2000) Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics 156(3):1309–1322

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2008) Nucleotide poymorphism and phenotypic associations with and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226

    Article  PubMed  CAS  Google Scholar 

  • Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001a) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-firI. timing of vegetative bud flush. Theor Appl Genet 102(8):1142–1151

    Article  CAS  Google Scholar 

  • Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, Neale DB (2001b) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor Appl Genet 102(8):1152–1158

    Google Scholar 

  • Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165(3):1489–1506

    Google Scholar 

  • Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16(18):3955–3969. doi:10.1111/j.1365-294X.2007.03442.x

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354

    Article  PubMed  CAS  Google Scholar 

  • Kremer A, Le Corre V (2012) Decoupling of differentiation between traits and their underlying genes in response to divergent selection. Heredity 108(4):375–385. doi:10.1038/hdy.2011.81

    Article  PubMed  CAS  Google Scholar 

  • Kremer A, Zanetto A, Ducousso A (1997) Multilocus and multitrait measures of differentiation for gene markers and phenotypic traits. Genetics 145(4):1229–1241

    PubMed  CAS  Google Scholar 

  • Kremer A, Casasoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 7th edn, Forest trees. Springer, New York, p pp 161

    Google Scholar 

  • Langlet O (1971) Two hundred years of genecology. Taxon 20:653–722

    Article  Google Scholar 

  • Lasky JR, Des Marais DL, Mckay JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21:5512–5529. doi:10.1111/j.1365-294X.2012.05709.x

    Article  PubMed  Google Scholar 

  • Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaption. Mol Ecol 21:1548–1566

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd English edition developments in environmental modelling, vol 24. Elsevier, Amsterdam

    Google Scholar 

  • Mackay J, Dean JF, Plomion C, Peterson DG, Canovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S, Vinceti B, Abarca D, Diaz-Sala C, Cervera MT (2012) Towards decoding the conifer Giga-genome. Plant Molecular Biology 80:555–569. doi:10.1007/s11103-012-9961-7

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution 18(4):189–197

    Article  Google Scholar 

  • Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin MJ (2010a) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19(17):3760–3772

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010b) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19(17):3824–3835. doi:10.1111/j.1365-294X.2010.04716.x

    Article  Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P (2012) Broad-scale adaptive genetic variation in Alpine plants is mainly driven by temperature and precipitation. Mol Ecol 19:3824–3835

    Article  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17(2):240–248. doi:10.1101/gr.5681207

    Article  PubMed  CAS  Google Scholar 

  • Mimura M, Aitken SN (2007) Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity 99(2):224–232

    Article  PubMed  CAS  Google Scholar 

  • Mimura M, Aitken SN (2010) Local adaptation at the range peripheries of Sitka spruce. J Evol Biol 23(2):249–258

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, De Poali E (2011) Toward the conifer genome sequence. In: Plomion C, Bousquet J, Kole C (eds) Genetics, Genomics and Breeding of Conifers Trees, pp 389–403. Edenbridge and CRC, New York

  • Morgenstern EK (1996) Geographic variation in forest trees: genetic basis and application of knowledge in silviculture. Univ of British Columbia Press, Vancouver

    Google Scholar 

  • Moritsuka E, Hisataka Y, Tamura M, Uchiyama K, Watanabe A, Tsumura Y, Tachida H (2012) Extended linkage disequilibrium in noncoding regions in a conifer, Cryptomeria japonica. Genetics 190(3):1145. doi:10.1534/genetics.111.136697

    Article  PubMed  CAS  Google Scholar 

  • Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB (2012) The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol 21:5530–5545. doi:10.1111/mec.12043

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330. doi:10.1016/J.Plants.2004

    Article  PubMed  CAS  Google Scholar 

  • Nichols KM, Neale DB (2010) Association genetics, population genomics, and conservation: Revealing the genes underlying adaptation in natural populations of plants and animals. In: DeWoody JA, Bickham JW, Michler CH, Nichols KM, Olin E, Rhodes J, Woeste KE (eds) Molecular approaches in natural resource conservation and management. Cambridge University Press, New York, NY, pp 123–168

    Google Scholar 

  • Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21(12):2991–3005. doi:10.1111/j.1365-294X.2012.05513.x

    Article  PubMed  CAS  Google Scholar 

  • Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N (2011) QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics 12:145

    Article  PubMed  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19(2):174–184. doi:10.1111/j.1466-8238.2009.00506.x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. doi:10.1146/annurev.ecolsys.37.091305.110215

    Article  Google Scholar 

  • Prunier J, Laroche J, Beaulieu J, Bousquet J (2011) Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Mol Ecol 20(8):1702–1716. doi:10.1111/j.1365-294X.2011.05045.x

    Article  PubMed  CAS  Google Scholar 

  • Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11(2):375–385

    Article  Google Scholar 

  • Sork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19(17, SI):3489–3495. doi:10.1111/j.1365-294X.2010.04786.x

    Article  PubMed  Google Scholar 

  • Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang HF, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19(17):3806–3823. doi:10.1111/j.1365-294X.2010.04726

    Article  PubMed  Google Scholar 

  • St. Clair JB, Mandel NL, Vance-Borland KW (2005) Genecology of Douglas fir in western Oregon and Washington. Ann Bot 96:1199–1214

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the 'landscape' in landscape genetics. Heredity 98(3):128–142

    Article  PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514

    Article  PubMed  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi:10.1126/science.1128691

    Article  PubMed  CAS  Google Scholar 

  • Vasemagi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14(12):3623–3642

    Article  PubMed  CAS  Google Scholar 

  • Wagner HH (2003) Spatial covariance in plant communities: Integrating ordination, geostatistics, and variance testing. Ecology 84(4):1045–1057. doi:10.1890/0012-9658(2003)084[1045:scipci]2.0.co;2

    Article  Google Scholar 

  • Wagner HH (2004) Direct multi-scale ordination with canonical correspondence analysis. Ecology 85(2):342–351. doi:10.1890/02-0738

    Article  Google Scholar 

  • Wang TL, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol Appl 20(1):153–163

    Article  PubMed  CAS  Google Scholar 

  • Westfall RD, Conkle MT (1992) Allozyme markers in breeding zone 1050 designation. New Forests 6:279–309

    Google Scholar 

  • Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proceedings of the Royal Society B-Biological Sciences 273(1594):1587–1593. doi:10.1098/rspb.2006.3498

    Article  CAS  Google Scholar 

  • Zoldos V, Papes D, Brown S, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Sork.

Additional information

Communicated by A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sork, V.L., Aitken, S.N., Dyer, R.J. et al. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genetics & Genomes 9, 901–911 (2013). https://doi.org/10.1007/s11295-013-0596-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0596-x

Keywords

Navigation