Skip to main content
Log in

Identification of QTLs controlling seed dormancy in peach (Prunus persica)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Dormancy is a condition that delays or inhibits growth in seed, vegetative buds, and floral buds. In peach, seed germination occurs when seed accumulate sufficient stratification and growing degree hours to break dormancy and begin growing. Correlations have been reported between mean seed stratification requirements and mean bud chilling requirements among Prunus families, but an individual seed’s germination date and subsequent vegetative and floral bud break date are not correlated. Prior to this study, the genetic factors involved in regulating seed dormancy and their location on the peach genomic map were unknown. Segregating F2 seed were collected from a high × low chill F1 peach hybrid in 2005, 2006, and 2008. Germination date and growth habit was measured after the stratification requirement of the 2005 seed was fully met. The seed collected in 2006 and 2008 received varying amounts of stratification, which enabled data on stratification requirement, heat requirement, and growth habit to be collected. Genomic DNA was extracted from seedling leaf tissue and screened with SSR markers selected from the Prunus reference map at an average resolution of 20 cM. Seed dormancy quantitative trait loci (QTLs) were detected on G1, G4, G6/8, and G7. The QTLs detected on G6/8 and G7 were discovered in the same region as QTLs associated with floral bud chilling requirement and bloom time in peach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Abnormal growth

CU:

Chilling unit

G:

Linkage group

GD:

Germination date

GDH:

Growing degree hour

HR:

Heat requirement

QTL:

Quantitative trait loci

SR:

Stratification requirement

References

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Amer Soc Hort Sci 126(2):205–209

    CAS  Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley DM, Sederoff RR (1994) Targeting mapping and linkage analysis of morphological, isozymes and RAPD markers in peach. Theor Appl Genet 87:805–815

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    PubMed  CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellites repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Amer Soc Hort Sci 110(1):47–50

    Google Scholar 

  • Dennis GG Jr (1987) Two methods of studying rest: temperature alternation and genetic analysis. HortSci 22(5):820–824

    Google Scholar 

  • Dennis FG Jr (1994) Dormancy—what we know (and don’t know). HortSci 29(11):1249–1255

    Google Scholar 

  • Dicenta F, Garcia-Gusano M, Ortega E, Martinez-Gomez P (2005) The possibilities of early selection of late-flowering almonds as a function of seed germination or leafing time of seedlings. Plant Breed 124:305–309

    Article  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond–peach hybrid—location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. PNAS 101(26):9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbot AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Frisby JW, Seeley SD (1993a) Chilling of endodormant peach propagules: I. Seed germination and emergence. J Amer Soc Hort Sci 118(2):248–252

    Google Scholar 

  • Frisby JW, Seeley SD (1993b) Chilling of endodormant peach propagules: II. Initial seedling growth. J Amer Soc Hort Sci 118(2):253–257

    Google Scholar 

  • Garcia-Gusano M, Martinez-Gomez P, Dicenta F (2003) Breaking seed dormancy in almond (Prunus dulcis (Mill.) D.A. Webb). Sci Hortic 99:363–370

    Article  Google Scholar 

  • Garcia-Gusano M, Martinez-Gomez P, Dicenta F (2005) Pollinizer influence on almond seed dormancy. Sci Hortic 104:91–99

    Article  Google Scholar 

  • Geneve RL (2003) Impact of temperature on seed dormancy. HortSci 38(3):336–341

    Google Scholar 

  • Gianfanga TJ, Rachmiel S (1986) Changes in giberellin-like substances of peach seed during stratification. Physiol Plant 66:154–158

    Article  Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    Article  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24(23):2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Kester DE, Raddi P, Asay R (1977) Correlations of chilling requirements for germination, blooming and leafing within and among seedling populations of almond. J Amer Soc Hort Sci 102(2):145–148

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2:)174–181

    Google Scholar 

  • Martinez-Gomez P, Dicenta F (2001) Mechanisms of dormancy in seeds of peach (Prunus persica (L.) Batsch) cv. GF305. Sci Hortic 91:51–58

    Article  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond

  • Mnejja M, Garcia-Mas J, Howad W, Arus P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5(3):531–535

    Article  CAS  Google Scholar 

  • Perez-Gonzalez S (1990) Relationship between parental blossom season and speed of seed germination in peach. HortSci 25(8):958–960

    Google Scholar 

  • Pollock B (1962) Temperature control of physiological dwarfing in peach seedlings. Plant Physiol 37:190–197

    Article  PubMed  CAS  Google Scholar 

  • Powell LE (1987) Hormonal aspects of seed dormancy in temperate-zone woody plants. HortSci 22(5):845–850

    CAS  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for Redhaven and Elberta peach trees. HortSci 9:331–332

    Google Scholar 

  • Richardson EA, Seeley SD, Walker DR, Anderson JL, Ashcroft GL (1975) Pheno-climatology of spring peach bud development. HortSci 10:236–237

    Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Article  Google Scholar 

  • Seeley SD, Damavandy H (1985) Response of seed of seven deciduous fruits to stratification temperatures and implications for modeling. J Amer Soc Hort Sci 110(5):726–729

    Google Scholar 

  • Seeley SD, Ayanoglu HA, Frisby JW (1998) Peach seedling emergence and growth in response to isothermal and cycled stratification treatments reveal two dormancy components. J Amer Soc Hort Sci 123(5):776–780

    Google Scholar 

  • Sook J, Margaret S, Taein L, Anna B, Randall S, Albert A, Dorrie M (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36(Database issue):D1034–D1040

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Thèvenot C, Perino ED, Come D (1983) Influence of temperature on breaking of dormancy, germination sensu stricto and growth of apple embryo: thermal optimum of these phenomena. Israel J Bot 32:139–145

    Google Scholar 

  • Wang D, Beardow J (1968) Thermo-photo-effect on rosaceous seeds during germination as expressed in subsequent seedling development. Contrib Boyce Thompson Inst 24(2):17–23

    Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP, and RAPD. J Japan Hort Soc 74(3):204–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra M. Blaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaker, K.M., Chaparro, J.X. & Beckman, T.G. Identification of QTLs controlling seed dormancy in peach (Prunus persica). Tree Genetics & Genomes 9, 659–668 (2013). https://doi.org/10.1007/s11295-012-0578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0578-4

Keywords

Navigation