Skip to main content
Log in

Impact of rainfall gradient on aboveground biomass and soil organic carbon dynamics of forest covers in Gujarat, India

  • Original Article
  • Published:
Ecological Research

Abstract

Alterations in precipitation are affecting forest ecosystems’ soil carbon cycling. To understand how shifts in rainfall may alter these carbon pools, above-ground biomass (AGB), soil organic carbon (SOC), and microbial biomass carbon (MBC) of tropical forest covers were measured across a rainfall gradient (543–1590 mm) in Gujarat (India), a state falling under semi arid to tropical dry–wet conditions. Species diversity, tree density and soil texture were also measured. Field visits and data collection were carried out for 2 years (2009–2011) in 95 plots of 250 × 250 m in the forest covers across four distinct rainfall zones (RFZs). Data analysis showed that differences seen in the values of the measured parameters across the RFZs are statistically significant (P < 0.05). Positive correlations were observed between mean annual precipitation (MAP) and tree density, species diversity, AGB, SOC, and MBC. Across the RFZs, AGB ranged between 0.09 and 168.28 Mg ha−1; SOC values (up to 25 cm soil depth) varied between 2.94 and 147.84 Mg ha−1. Soil texture and MBC showed a significant impact on the dynamics of SOC in all the RFZs. MBC is more influenced by SOC rather than AGB. Both vegetation type and MAP have an important role in the regulation of SOC in tropical soils. Together, these results reveal complex carbon cycle responses are likely to occur in tropical soils under altered rainfall regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS 107:4618–4622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bashkin M, Binkley D (1998) Changes in soil carbon following afforestation in Hawaii. Ecology 79:828–833

    Article  Google Scholar 

  • Becknell JM, Kucek LK, Powers JS (2012) Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For Ecol and Manag 276:88–95

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Bijalwan A, Swamy SL, Sharma CM, Sharma NK, Tiwari AK (2010) Land-use, biomass and carbon estimation in dry tropical forest of Chhattisgarh region in India using satellite remote sensing and GIS. J For Res 21:161–170

    Article  Google Scholar 

  • Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132

    Article  Google Scholar 

  • Census of India, Ministry of Home Affairs, Government of India: http://www.censusindia.gov.in; http://www.censusgujarat.gov.in. Accessed 26 Apr 2013

  • Chaturvedi RK, Raghubanshi AS, Singh JS (2011) Carbon density and accumulation in woody species of tropical dry forest in India. For Ecol Manag 262:1576–1588

    Article  Google Scholar 

  • Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Chhabra A, Dadhwal VK (2004) Assessment of major pools and fluxes of carbon in Indian forests. Clim Change 64:341–360

    Article  CAS  Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. PNAS 110:5064–5068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conti G, Díaz S (2013) Plant functional diversity and carbon storage—an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28

    Article  CAS  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Tree 10:63–66

    CAS  PubMed  Google Scholar 

  • Dan-Dan W, Xue-Zheng S, Hong-Jie W, Weindorf DC, Dong-Sheng Y, Wei-Xia S, Hong-Yan R, Yong-Cun Z (2010) Scale effect of climate and soil texture on soil organic carbon in the uplands of northeast China. Pedosphere 20:525–535

    Article  Google Scholar 

  • Das DK, Chaturvedi OP, Mandal MP, Kumar R (2008) Effect of tree plantations on biomass and primary productivity of herbaceous vegetation in eastern India. Trop Ecol 49:95–101

    Google Scholar 

  • Degryze S, Six J, Paustian K, Morriss SJ, Paul EA, Merckx R (2004) Soil organic carbon pool changes following land-use conversions. Glob Change Biol 10:1120–1132

    Article  Google Scholar 

  • Demoling F, Figueroa D, Baath E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485–2495

    Article  CAS  Google Scholar 

  • Dinakaran J, Krishnayya NSR (2008) Variations in type of vegetal cover and heterogeneity of soil organic carbon in affectingsink capacity of tropical soils. Curr Sci 94:1144–1150

    Google Scholar 

  • Dinakaran J, Krishnayya NSR (2011) Variations in total organic carbon and grain size distribution in ephemeral river sediments in western India. Int J Sediment Res 26:239–246

    Article  Google Scholar 

  • Domingues TF, Erwin TL, Fearnside PM, Franc MB, Freitas MA, Higuchi N, Honorio EC, Iida Y, Jiménez E, Kassim AR, Killeen TJ, Laurance WF, Lovett JC, Malhi Y, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Mendoza C, Metcalfe DJ, Mitchard ETA, Neill DA, Nelson BW, Nilus R, Nogueira EM, Parada A, Peh KSH, Cruz AP, Peñuela MC, Pitman NCA, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Reitsma JM, Rudas A, Saiz G, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Sonk´e B, Stropp J, Taedoumg HE, Tan S, ter Steege H, Terborgh J, Torello-Raventos M, van der Heijden GMF, V´asquez R, Vilanova E, Vos VA, White L, Willcock S, Woell H, Phillips OL (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403

    Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks: a meta-analysis. Glob Change Biol 17:1658–1670

    Article  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  • Forests and Environment Department, Government of Gujarat: http://www.envforguj.in. Accessed 26 Apr 2013

  • Forest Survey of India (FSI), Ministry of Environment and Forest: http://www.fsi.org.in. Accessed 26 Apr 2013

  • Forest Survey of India (FSI) (1996) Volume equations for forests of India, Nepal and Bhutan. Published by Director FSI, Ministry of Environment and Forests, Government of India, Dehradun

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023. doi:10.1088/1748-9326/2/4/045023

    Article  Google Scholar 

  • Gómez-Aparicio L, García-Valde RSW, Rui´Z-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Change Biol 17:2400–2414

  • Gujarat Forest Statistics (2010–2011) Compiled by project planning, monitoring and evaluation cell. Principal Chief Conservator of Forests & Head of the Forest Force Gujarat State, Gandhinagar

  • Gujarat State Agricultural Marketing Board, Government of Gujarat: http://agri.gujarat.gov.in. Accessed 26 Apr 2013

  • Guo LH, Gifford RH (2002) Soil carbon stocks and land use change: meta analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Haberl H, Er KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 104:12942–12947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houghton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Chang Biol 7:731–746

    Article  Google Scholar 

  • Indian Meteorological Department (IMD), Ministry of Earth Sciences, Government of India: http://www.imd.gov.in. Accessed 26 Apr 2013

  • Jha P, Mohapatra KP (2010) Leaf litterfall, fine root production and turnover in four major tree species of the semi-arid region of India. Plant Soil 326:481–491

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Kilmer VJ, Alexander LT (1949) Methods of making mechanical analysis of soils. Soil Sci 58:15–24

    Article  Google Scholar 

  • Koppen W (1931) Grundriss der klimakunde. De Gruyter, Berlin

  • Lal R (2004) Soil carbon sequestration in India. Clim Change 65:277–296

    Article  CAS  Google Scholar 

  • Lewis SL (2006) Tropical forests and the changing earth system. Phil Trans R Soc Lond B 261:195–210

    Article  Google Scholar 

  • Mahaney WM (2010) Plant controls on decomposition rates: the benefits of restoring abandoned agricultural lands with native prairie grasses. Plant Soil 330:91–101

    Article  CAS  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  PubMed  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  CAS  Google Scholar 

  • Mehta N, Dinakaran J, Patel S, Laskar AH, Yadava MG, Ramesh R, Krishnayya NSR (2013) Changes in litter decomposition and soil organic carbon in a reforested tropical deciduous cover (India). Ecol Res 28:239–248

    Article  CAS  Google Scholar 

  • Meng M, Ni J, Zong M (2011) Impacts of changes in climate variability on regional vegetation in China: nDVI-based analysis from 1982 to 2000. Ecol Res 26:421–428

    Article  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Ann Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JP, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautianen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Pande PK (2005) Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Trop Ecol 46:229–239

    Google Scholar 

  • Patil P, Singh S, Dadhwal VK (2012) Above ground forest phytomass assessment in southern Gujarat. J Indian Soc Remote Sens 40:37–46

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Richards GP (2003) Predicted change in soil carbon following afforestation or reforestation, and analysis of controlling factors by linking a C accounting model (CAMFor) to models of forest growth (3PG), litter decomposition (GENDEC) and soil C turnover (RothC). For Ecol Manag 177:485–501

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Piao S, Fang J, Ciasis P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  • Powel SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114:1053–1068

    Article  Google Scholar 

  • Ravindranath NH, Somashekhar BS, Gadgil M (1997) Carbon flow in Indian forests. Clim Change 35:297–320

    Article  CAS  Google Scholar 

  • Ravindranath NH, Sudha P, Rao S (2001) Forestry for sustainable biomass production and carbon sequestration in India. Mitig Adapt Strat Glob Change 6:233–256

    Article  Google Scholar 

  • Ravindranath NH, Chaturvedi RK, Murthy IK (2008) Forest conservation, afforestation and reforestation in India: implications for forest carbon stocks. Curr Sci 95(2):216–222

    Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, Velde MVD, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    Article  CAS  PubMed  Google Scholar 

  • Richards AE, Dalal RC, Schmidt S (2007) Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biol Biochem 39:2078–2090

    Article  CAS  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel L (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS 108:9899–9904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Slik JWF, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD, Raes N, Sheil D, Sidiyasa K, Suzuki E, Van Valkenburg JLCH (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeogr 19:50–60

    Article  Google Scholar 

  • Tewari JC, Harsh LN, Sharma NK, Bohra MD, Tripathi D (2001) Variation and interrelations among tree characters, pod-seed morphology and pod biochemical characters in Prosopis Juliflora (Sw) Dc. For Trees Livelihoods 2:113–126

    Article  Google Scholar 

  • Thomey ML, Scott L, Colli NS, Vargasw R, Johnson JE, Brown RF, Natvig DO, Ens MF (2011) Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob Change Biol 17:1505–1515

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter and proposed modifications of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Whittaker RH, Bormann FH, Lekins GE, Siccama TG (1974) The Hubbard Brook ecosystem study: forest biomass and production. Ecol Monographs 44:233–252

    Article  Google Scholar 

  • Witt C, Gaunt JL, Glaicia CC, Ottow JCG, Neue HU (2000) A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soil 30:510–519

    Article  CAS  Google Scholar 

  • Yang K, Zhu J, Zhang M, Yan Q, Sun OJ (2010) Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J Plant Ecol 3:175–182

    Article  Google Scholar 

  • Yang Y, Luo Y, Finzi AC (2011) Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol 190:977–989

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li P, Ding J, Zhao X, Ma W, Ji C, Fang J (2014) Increased topsoil carbon stock across China’s forests. Glob Change Biol 20:2687–2696

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Indian Institute of Remote Sensing (IIRS), NRSC, Dehradun, INDIA for financial assistance through ISRO-Geosphere Biosphere Programme (NVCPA project). Authors are thankful to the State forest department, Gujarat, India for logistics and, to UGC-DRS & DBT-ILSPARE programmes for infrastructure facilities. We like to offer our thanks to Dr. Ankur R. Desai (University of Wisconsin) for his valuable suggestions and language editing. We are thankful for the critical and valuable suggestions of anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. R. Krishnayya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 790 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, N., Pandya, N.R., Thomas, V.O. et al. Impact of rainfall gradient on aboveground biomass and soil organic carbon dynamics of forest covers in Gujarat, India. Ecol Res 29, 1053–1063 (2014). https://doi.org/10.1007/s11284-014-1192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1192-8

Keywords

Navigation