Skip to main content
Log in

Performance Evaluation of \(\pi /4\)-DQPSK OFDM over Underwater Acoustic Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the performance of orthogonal frequency division multiplexing (OFDM) with \(\pi /4\)-differential quadrature phase shift keying (\(\pi /4\)-DQPSK) modulation, over underwater acoustic (UWA) channels. The orthogonal multicarrier scheme with non-coherent detection technique results in spectrally efficient, reliable and simple receiver design. \(\pi /4\)-QPSK has less envelop fluctuation and performs better in multipath UWA channels. It is shown that with a pair of hydrophones for reception and maximum-ratio combining (MRC) technique, one can achieve considerably low bit-error-rate (BER) at practical signal-to-noise ratio (SNR) value. Further, the BER expression for such a scheme is obtained by using the probability density function and is shown to consist of a series with fast converge rate. The series solution approximation provides a reasonable match between the simulation and the analytical results with and without the MRC diversity technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akaiwa, Y., & Nagata, Y. (1987). Highly efficient digital mobile communications with a linear modulation method. IEEE Journal on Selected Areas in Communications, 5(5), 890–895.

    Article  Google Scholar 

  2. Chandra, A., & Bose, C. (2008). Analysis of selection combining for differentially detected \(\pi /4\)-DQPSK in Nakagami-m fading channels. In 2008 Annual IEEE India Conference, Kanpur (pp. 317–322). doi:10.1109/INDCON.2008.4768742.

  3. Chandra, A., Mandal, S. C., & Bose, C. (2008). BER of \(\pi /4\)-DQPSK with multichannel reception: Some series solutions. In TENCON 2008-2008 IEEE Region 10 Conference, Hyderabad (pp. 1–6). doi:10.1109/TENCON.2008.4766489.

  4. Chandra, A., & Bose, C. (2010). BER of differentially detected \(\pi /4\)-DQPSK with selection combining in nakagami-m fading. International Journal of Wireless Information Networks, 17(1), 54–63.

    Article  Google Scholar 

  5. Chennakeshu, S., & Saulnier, G. (1993). Differential detection of \(\pi /4\)-shifted-DQPSK for digital cellular radio. IEEE Transactions on Vehicular Technology, 42(1), 46–57.

    Article  Google Scholar 

  6. Kumar, P., & Kumar, P. (2015). A comparative study of spread OFDM with transmit diversity for underwater acoustic communications. Wireless Personal Communications, 83(1), 69–86.

    Article  Google Scholar 

  7. Kumar, P., Trivedi, V. K., & Kumar, P. (2015). Performance evaluation of DQPSK OFDM for underwater acoustic communications. In Underwater Technology (UT), IEEE, Chennai (pp. 1–6). doi:10.1109/UT.2015.7108219.

  8. Li, B., Zhou, S., Stojanovic, M., Freitag, L., & Willett, P. (2008). Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts. IEEE Journal of Oceanic Engineering, 33(2), 198–209.

    Article  Google Scholar 

  9. Miller, M. E., & Lee, J. S. (1998). BER expressions for differentially detected \(\pi /4\) DQPSK modulation. IEEE Transactions on Communications, 46(1), 71–81.

    Article  Google Scholar 

  10. Otnes, R., Asterjadhi, A., Casar, P., Goetz, M., Husy, T., Nissen, I., et al. (2012). Underwater acoustic networking techniques, briefs in electrical and computer engineering. New York: Springer.

    Book  Google Scholar 

  11. Proakis, J. G., Sozer, E. M., Rice, J. A., & Stojanovic, M. (2001). Shallow water acoustic networks. IEEE Communications Magazine, 39(11), 114–1191.

    Article  Google Scholar 

  12. Simon, M. K., & Alouini, M. S. (2003). Some new results for integrals involving the generalized marcum Q function and their application to performance evaluation over fading channels. IEEE Transactions on Wireless Communications, 2(4), 611–615.

    Article  Google Scholar 

  13. Simon, M. K., & Alouini, M. S. (2005). Digital Communication over fading Channels (2nd ed.). New York: Wiley.

    Google Scholar 

  14. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.

    Article  Google Scholar 

  15. Stojanovic, M. (2005). Retrofocusing techniques for high rate acoustic communications. The Journal of the Acoustical Society of America, 117(3), 1173–1185.

    Article  MathSciNet  Google Scholar 

  16. Tan, P., & Beaulieu, N. C. (2007). Precise BER analysis of \(\pi /4\)-DQPSK OFDM with carrier frequency offset over frequency selective fast fading channels. IEEE Transactions on Wireless Communications, 6(10), 3770–3780.

    Article  Google Scholar 

  17. Vajapeyam, M., Vedantam, S., Mitra, U., Preisig, J. C., & Stojanovic, M. (2008). Distributed space time cooperative schemes for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 33(4), 489–501.

    Article  Google Scholar 

  18. Xiong, F. (2006). Digital Modulation Techniques (2nd ed.). Norwood, MA, USA: Artech House Inc.

    MATH  Google Scholar 

  19. Zielinski, A., Yoon, Y. H., & Wu, L. (1995). Performance analysis of digital acoustic communication in a shallow water channel. IEEE Journal of Oceanic Engineering, 20(4), 293–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, P. Performance Evaluation of \(\pi /4\)-DQPSK OFDM over Underwater Acoustic Channels. Wireless Pers Commun 91, 1137–1152 (2016). https://doi.org/10.1007/s11277-016-3517-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3517-0

Keywords

Navigation