Skip to main content

Advertisement

Log in

Survey of Dynamic Super-Frame Adjustment Schemes in Beacon-Enabled IEEE 802.15.4 Networks: An Application’s Perspective

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

IEEE 802.15.4 targets low data rate communication with limited power devices and cheap wireless networking solutions. In recent years both industry and academia are attracted to IEEE 802.15.4 because of its applicability in wireless sensor networks and wireless body area networks. An important feature of IEEE 802.15.4 is its very low duty cycle operation for conserving energy consumption of sensor device. Super-frame structure of IEEE 802.15.4 defines the duty cycle of nodes. The super-frame structure is based on two parameters: beacon order (BO) and super-frame order (SO). The performance of an IEEE 802.15.4 network depends on the values of BO and SO. These values depict the energy consumption, throughput, node discovery and latency of communication. IEEE 802.15.4 uses fixed BO and SO values which can be carefully chosen to meet the network requirements. In this paper, an extensive survey of dynamic super-frame adjustment algorithms is presented. The survey focuses on beacon-enabled star topology of IEEE 802.15.4 and studies the impact of aforementioned algorithms for various applications. Also, the survey categorizes common IEEE 802.15.4 applications based on their requirements for super-frame adjustment. A brief simulation analysis is included in this survey to highlight the impact of BO and SO on the network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IEEE 802.15.4 wireless LAN medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs), IEEE standard 802.15.4, (2011).

  2. Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs) (amendment of IEEE Std 802.15.4-2003), IEEE standard 802.15.4, (2006).

  3. Neugebauer, M., Plonnigs, J., & Kabitzsch, K. (2005, January). A new beacon order adaptation algorithm for IEEE 802.15.4 networks. In Proceedings of 2nd European workshop on wireless sensor networks (EWSN) (pp. 302–311).

  4. Gao, B., & He, C. (2008). An individual beacon order adaptation algorithm for IEEE 802. 15. 4 networks. In Proceedings of the 11th IEEE Singapore international conference on communication systems (ICCS 08) (pp. 12–16).

  5. Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-cycle adaptation algorithm for IEEE 802.15.4 beacon-enabled networks. In Proceedings of IEEE vehicular technology conference (pp. 110–113).

  6. Hurtado-Lpez, J., & Casilari, E. (2013). An adaptive algorithm to optimize the dynamics of IEEE 802.15.4 networks. In Mobile networks and management (pp. 136–148).

  7. Lee, B.-H., & Wu, H.-K. (2010). Study on a dynamic superframe adjustment algorithm for IEEE 802.15.4 LR-WPAN. In Proceedings of IEEE vehicular technology conference (pp. 1–5). May 2010.

  8. Barbieri, A., Chiti, F., & Fantacci, R. (2006). Proposal of an adaptive MAC protocol for efficient IEEE 802.15.4 low power communications. In Proceedings of IEEE 49th global telecommunication conference (pp. 1–5).

  9. Rasouli, H., Kavian, Y., & Rashvand, H. (2014). ADCA: Adaptive duty cycle algorithm for energy efficient IEEE 802.15. 4 beacon-enabled wireless sensor networks. IEEE Sensors Journal, 14(11), 3893–3902.

    Article  Google Scholar 

  10. Lee, J., Ha, J. Y., Jeon, J., Kim, D. S., & Kwon, W. H. (2007). ECAP: A bursty traffic adaptation algorithm for IEEE 802.15.4 beacon-enabled networks. In Proceedings of IEEE 65th vehicular technology conference (pp. 203–207).

  11. Lim, J.-H., & Jang, B. T. (2008). Dynamic duty cycle adaptation to real-time data in IEEE 802.15.4 based WSN. In Proceedings of IEEE 5th consumer communications and networking conference (pp. 353–357).

  12. Suh, C., Mir, Z. H., & Ko, Y.-B. (2008). Design and implementation of enhanced IEEE 802.15.4 for supporting multimedia service in wireless sensor networks. In Proceeding of computer networks (Vol. 52, no. 13, pp. 2568–2581).

  13. Khanafer, M., Guennoun, M., & Mouftah, H. (2011). Adaptive sleeping periods in IEEE 802.15.4 for efficient energy savings: Markov-based theoretical analysis. In IEEE international conference on communications (pp. 1–6).

  14. de Paz Alberola, R., & Pesch, D. (2012). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Proceedings of Ad Hoc Networks, 10(2), 664–679.

    Google Scholar 

  15. Camila, O. H. S., Yacine, G.-D., & Stephane, L. (2013). A duty cycle self-adaptation algorithm for the 802.15. 4 wireless sensor networks. In IEEE transactions on global information infrastructure symposium (pp. 1–7).

  16. Maulin, P., & Wangm, J. (2010, February). Applications, challenges, and prospective in emerging body area networking technologies. In IEEE wireless communications (pp. 80–88).

  17. Jelena, M., & Misic, V. B. (2010, February). Bridge performance in a multitier wireless network for healthcare monitoring. In IEEE wireless communications (pp. 90–95).

  18. Viet, T. T., & Chung, W.-Y. (2014). IEEE-802.15. 4-based low-power body sensor node with RF energy harvester. Bio-Medical Materials and Engineering, 24(6), 3503–3510.

    Google Scholar 

  19. Liang, W.-H., Chen, T., Lin, K. & Fang Q. (2015). Implementation of a wireless ECG acquisition soc for IEEE 802.15. 4 (ZigBee) applications. IEEE Journal of Biomedical and Health Informatics, 19(1), 247–255.

    Article  Google Scholar 

  20. Franco, J., Aedo, J., & Rivera F. (2012). Continuous, non-invasive and cuff-free blood pressure monitoring system. In IEEE Andean region international conference (pp. 31–34).

  21. Lee, D. Y. C., Lu, Y. Y., Lin, Y. Y., Wu, C. H., Wu, M. J., Chen, C. L., et al. (2011). Development of a telecare system based on Zigbee mesh network for monitoring blood pressure of patients with hemodialysis in health care centers. International Journal of Medical Systems, 35(5), 877–883.

    Article  Google Scholar 

  22. Espina, J., Thomas, F., Muehlsteff, J., & Xavier, A. (2006, September). Wireless body sensor network for continuous cuff-less blood pressure monitoring. In IEEE medical devices and biosensors, 3rd international summer school (pp. 11–15).

  23. Franco, J., Aedo, J. & Rivera, F. (2012). Continuous, non-invasive and cuff-free blood pressure monitoring system. In IEEE Andean region international conference (pp. 31–34).

  24. Ullah, S., Khan, P., Ullah, N., Saleem, S., Higgins, H., & Kwak, K. S. (2009). A review of wireless body area networks for medical applications. International Journal of Communications, Network and System Sciences, 2(8), 797–803.

    Article  Google Scholar 

  25. Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.

    Article  Google Scholar 

  26. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 5(14), 921–960.

    Article  Google Scholar 

  27. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  28. Wang, D., Smith, D., Krasinski, R., Ghosh, M., & Batra, A. (2013). Emerging spectrum regulation for medical body area network. In IEEE international conference of body sensor networks (pp. 1–6).

  29. Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80–88.

    Article  Google Scholar 

  30. Pekhteryev, G., Zafer, S., Orlik, P., & Bhatti G. (2005). Image transmission over IEEE 802.15. 4 and ZigBee networks. In IEEE international symposium on circuits and systems (pp. 3539–3542).

  31. Stephan, H., Daniel, P., Sufen, F., & Hamid A. (2007). MeshEye: A hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In Proceedings of the 6th international conference on Information processing in sensor networks ACM (pp. 360–369).

  32. Farooq, M. O., & Kunz T. (2015). BandEst: Measurement-based available bandwidth estimation and flow admission control algorithm for ad hoc IEEE 802.15. 4-based wireless multimedia networks. International Journal of Distributed Sensor Networks, 2015, 1–15.

    Google Scholar 

  33. Pham, C., Lecuire, V., & Moureaux, J. M. (2013). Performances of multi-hops image transmissions on IEEE 802.15. 4 wireless sensor networks for surveillance applications. In IEEE 9th international conference of wireless and mobile computing, networking and communications (pp. 477–484).

  34. Simon, G., Maroti, M., Ledeczi, A., Balogh, G., Kusy, B., Nadas, A., et al. (2004). Sensor network-based counter-sniper system. In Second international conference on embedded networked sensor systems (pp. 1–12).

  35. Baronti, P., Pillai, P., Chook, V., Chessa, S., Gotta A., & FunHu, F. (2006, May 12). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. In Mobile and satellite communication research centre.

  36. Gong, P., Xu, Q., & Chen, T. M. (2014, July). Energy harvesting aware routing protocol for wireless sensor networks. In IEEE 9th international symposium on communication systems, networks and digital signal processing (pp. 171–176).

  37. Elaine, S., & Perrig, A. (2004). Designing secure sensor networks. Wireless Communications, 11(6), 38–43.

    Article  Google Scholar 

  38. Feng, C., Talanis, T., German, R., & Dressler, F. (2009). Real-time enabled IEEE 802.15. 4 sensor networks in industrial automation. In IEEE international symposium on industrial embedded systems (pp. 136–139).

  39. Jose, G. A., Marco, N., Ed, C., & Monique, B. (2001). IEEE 802.15. 4: A developing standard for low-power low-cost wireless personal area networks. IEEE Network, 15(5), 12–19.

    Article  Google Scholar 

  40. Salles, N., Krommenacker, N., & Lecuire, V. (2008). Performance study of IEEE 802.15. 4 for industrial maintenance applications. In IEEE international conference on industrial technology (pp. 1–6).

  41. Yoo, S. E., Chong, P. K., Kim, D., Doh, Y., Pham, M. L., Choi, E., et al. (2010). Guaranteeing real-time services for industrial wireless sensor networks with IEEE 802.15. 4. IEEE Transactions on Industrial Electronics, 57(11), 3868–3876.

    Article  Google Scholar 

  42. Li, Z. (2006, October). ZigBee wireless sensor network in industrial applications. In International joint conference (Vol. 10).

  43. Lin, S., Liu, J., & Fang, Y. (2007, August). ZigBee based wireless sensor networks and its applications in industrial. In IEEE international conference on automation and logistics (pp. 1979–1983).

  44. Jaypal, B., Afshan, M., Amol, B., Shweta A., & Amruta, C. A. (2004, April ). Real time monitoring and control system for green house based on 802.15. 4 wireless sensor network. In Fourth international conference communication systems and network technologies (pp. 98–103).

  45. Ruiz, L. G., Lunadei, L., Barreiro, P., & Robla, I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors, 9(6), 4728–4750.

    Article  Google Scholar 

  46. Garcia-Sanchez, A. J., Garcia, F. S., & Garcia, J. H. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.

    Article  Google Scholar 

  47. Kalaivani, T., Allirani, A., & Priya, P. (2011). A survey on Zigbee based wireless sensor networks in agriculture. In 3rd IEEE international conference on trendz in information sciences and computing (pp. 85–89).

  48. Dandelski, C., Wenning, B. L., Viramontes, D. P., Pesch, D., & Linnartz, J. P. (2015). Scalability of dense wireless lighting control networks. IEEE Communications Magazine, 53(1), 157–165.

    Article  Google Scholar 

  49. Petrova, M., Riihijarvi, J., Mahonen, P., & Labella, S. (2006). Performance study of IEEE 802.15. 4 using measurements and simulations. In Wireless communications and networking conference (Vol. 1, pp. 487–492).

  50. Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. IEEE Communications Magazine, 45(4), 70–77.

    Article  Google Scholar 

  51. Han, D. M., & Lim, J. H. (2010). Smart home energy management system using IEEE 802.15. 4 and zigbee. IEEE Transactions on Consumer Electronics, 56(3), 1403–1410.

    Article  Google Scholar 

  52. Gutierrez, J. A. (2004). On the use of IEEE 802.15. 4 to enable wireless sensor networks in building automation. In 15th IEEE international symposium on personal. Indoor and mobile radio communications (Vol. 3, pp. 1865–1869).

  53. Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.

    Article  Google Scholar 

  54. Werb, J., Newman, M., Berry, V., Lamb, S., Sexton, D., & Lapinski, M. (2005, March). Improved quality of service in IEEE 802.15. 4 mesh networks. In Proceedings of international workshop on wireless and industrial automation (pp. 1–6).

  55. Li, H. B., & Kohno, R. (2008). Body area network and its standardization at IEEE 802.15. BAN. In Advances in mobile and wireless communications (pp. 223–238).

  56. Kim, T. H., Ha, J. Y., & Choi, S. (2009). Improving spectral and temporal efficiency of collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596–1609.

    Article  Google Scholar 

  57. NS2. http://nsnam.isi.edu/nsnam/index.php/MainPage.

  58. Low-power 2.4GHz transceiver designed for industrial and consumer IEEE 802.15.4, ZigBee. http://www.atmel.com/devices/at86rf231.aspx.

  59. Garg, R., Paulus, R., Jaiswal, A. K., & Ashok, A. (2014, February). Performance analysis of a beacon and non beacon enabled IEEE 802.15. 4 star WSNs with different traffic loads. International Journal of Current Engineering and Technology, 4(1), 987–992.

    Google Scholar 

  60. Ransing, S. R., & Rajput, M. (2015). Smart home for elderly care, based on wireless sensor network. In IEEE international conference on Nascent technologies in the engineering field (pp. 1–5).

  61. Pereira, R., Figueiredo, J., Melicio, R., Mendes, V. M. F., Martins, J., & Quadrado, J. C. (2015). Consumer energy management system with integration of smart meters. Energy Reports, 1, 22–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Farhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhad, A., Zia, Y. & Hussain, F.B. Survey of Dynamic Super-Frame Adjustment Schemes in Beacon-Enabled IEEE 802.15.4 Networks: An Application’s Perspective. Wireless Pers Commun 91, 119–135 (2016). https://doi.org/10.1007/s11277-016-3448-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3448-9

Keywords

Navigation